UPDATE: Adds 56 functions in the Statistical section
Uses statrs for numerical functions REFACTOR: Put statistical functions on its own module This might seem counter-intuitive but the wasm build after this refactor is 1528 bytes smaller :)
This commit is contained in:
committed by
Nicolás Hatcher Andrés
parent
67ef3bcf87
commit
6822505602
264
base/src/functions/statistical/covariance.rs
Normal file
264
base/src/functions/statistical/covariance.rs
Normal file
@@ -0,0 +1,264 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_covariance_p(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"First argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Second argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Same number of cells
|
||||
if values1_opts.len() != values2_opts.len() {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.P requires arrays of the same size".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Count numeric data points in each array (ignoring text/booleans/empty)
|
||||
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
|
||||
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
|
||||
|
||||
if count1 == 0 || count2 == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.P requires at least one numeric value in each array".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if count1 != count2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.P arrays must have the same number of numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Build paired numeric vectors, position by position
|
||||
let mut xs: Vec<f64> = Vec::with_capacity(count1);
|
||||
let mut ys: Vec<f64> = Vec::with_capacity(count2);
|
||||
|
||||
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
|
||||
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
|
||||
xs.push(x);
|
||||
ys.push(y);
|
||||
}
|
||||
}
|
||||
|
||||
let n = xs.len();
|
||||
if n == 0 {
|
||||
// Should be impossible given the checks above, but guard anyway
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.P has no paired numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n_f = n as f64;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
for i in 0..n {
|
||||
sum_x += xs[i];
|
||||
sum_y += ys[i];
|
||||
}
|
||||
let mean_x = sum_x / n_f;
|
||||
let mean_y = sum_y / n_f;
|
||||
|
||||
let mut sum_prod = 0.0;
|
||||
for i in 0..n {
|
||||
let dx = xs[i] - mean_x;
|
||||
let dy = ys[i] - mean_y;
|
||||
sum_prod += dx * dy;
|
||||
}
|
||||
|
||||
let cov = sum_prod / n_f;
|
||||
CalcResult::Number(cov)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_covariance_s(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"First argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Second argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Same number of cells
|
||||
if values1_opts.len() != values2_opts.len() {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.S requires arrays of the same size".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Count numeric data points in each array (ignoring text/booleans/empty)
|
||||
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
|
||||
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
|
||||
|
||||
if count1 == 0 || count2 == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.S requires numeric values in each array".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if count1 != count2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.S arrays must have the same number of numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Build paired numeric vectors
|
||||
let mut xs: Vec<f64> = Vec::with_capacity(count1);
|
||||
let mut ys: Vec<f64> = Vec::with_capacity(count2);
|
||||
|
||||
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
|
||||
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
|
||||
xs.push(x);
|
||||
ys.push(y);
|
||||
}
|
||||
}
|
||||
|
||||
let n = xs.len();
|
||||
if n < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.S requires at least two paired data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n_f = n as f64;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
for i in 0..n {
|
||||
sum_x += xs[i];
|
||||
sum_y += ys[i];
|
||||
}
|
||||
let mean_x = sum_x / n_f;
|
||||
let mean_y = sum_y / n_f;
|
||||
|
||||
let mut sum_prod = 0.0;
|
||||
for i in 0..n {
|
||||
let dx = xs[i] - mean_x;
|
||||
let dy = ys[i] - mean_y;
|
||||
sum_prod += dx * dy;
|
||||
}
|
||||
|
||||
let cov = sum_prod / (n_f - 1.0);
|
||||
|
||||
CalcResult::Number(cov)
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user