UPDATE: Adds 56 functions in the Statistical section

Uses statrs for numerical functions

REFACTOR: Put statistical functions on its own module

This might seem counter-intuitive but the wasm build after this refactor
is 1528 bytes smaller :)
This commit is contained in:
Nicolás Hatcher
2025-11-20 21:10:47 +01:00
committed by Nicolás Hatcher Andrés
parent 67ef3bcf87
commit 6822505602
54 changed files with 7290 additions and 387 deletions

View File

@@ -711,6 +711,7 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
Function::Value => args_signature_scalars(arg_count, 1, 0), Function::Value => args_signature_scalars(arg_count, 1, 0),
Function::Valuetotext => args_signature_scalars(arg_count, 1, 1), Function::Valuetotext => args_signature_scalars(arg_count, 1, 1),
Function::Average => vec![Signature::Vector; arg_count], Function::Average => vec![Signature::Vector; arg_count],
Function::Avedev => vec![Signature::Vector; arg_count],
Function::Averagea => vec![Signature::Vector; arg_count], Function::Averagea => vec![Signature::Vector; arg_count],
Function::Averageif => args_signature_sumif(arg_count), Function::Averageif => args_signature_sumif(arg_count),
Function::Averageifs => vec![Signature::Vector; arg_count], Function::Averageifs => vec![Signature::Vector; arg_count],
@@ -889,6 +890,105 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
Function::Dvar => vec![Signature::Vector, Signature::Scalar, Signature::Vector], Function::Dvar => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dvarp => vec![Signature::Vector, Signature::Scalar, Signature::Vector], Function::Dvarp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dstdevp => vec![Signature::Vector, Signature::Scalar, Signature::Vector], Function::Dstdevp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::BetaDist => args_signature_scalars(arg_count, 4, 2),
Function::BetaInv => args_signature_scalars(arg_count, 3, 2),
Function::BinomDist => args_signature_scalars(arg_count, 4, 0),
Function::BinomDistRange => args_signature_scalars(arg_count, 3, 1),
Function::BinomInv => args_signature_scalars(arg_count, 3, 0),
Function::ChisqDist => args_signature_scalars(arg_count, 4, 0),
Function::ChisqDistRT => args_signature_scalars(arg_count, 3, 0),
Function::ChisqInv => args_signature_scalars(arg_count, 3, 0),
Function::ChisqInvRT => args_signature_scalars(arg_count, 2, 0),
Function::ChisqTest => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::ConfidenceNorm => args_signature_scalars(arg_count, 3, 0),
Function::ConfidenceT => args_signature_scalars(arg_count, 3, 0),
Function::CovarianceP => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::CovarianceS => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::Devsq => vec![Signature::Vector; arg_count],
Function::ExponDist => args_signature_scalars(arg_count, 3, 0),
Function::FDist => args_signature_scalars(arg_count, 4, 0),
Function::FDistRT => args_signature_scalars(arg_count, 3, 0),
Function::FInv => args_signature_scalars(arg_count, 3, 0),
Function::FInvRT => args_signature_scalars(arg_count, 3, 0),
Function::Fisher => args_signature_scalars(arg_count, 1, 0),
Function::FisherInv => args_signature_scalars(arg_count, 1, 0),
Function::Gamma => args_signature_scalars(arg_count, 1, 0),
Function::GammaDist => args_signature_scalars(arg_count, 4, 0),
Function::GammaInv => args_signature_scalars(arg_count, 3, 0),
Function::GammaLn => args_signature_scalars(arg_count, 1, 0),
Function::GammaLnPrecise => args_signature_scalars(arg_count, 1, 0),
Function::HypGeomDist => args_signature_scalars(arg_count, 5, 0),
Function::LogNormDist => args_signature_scalars(arg_count, 4, 0),
Function::LogNormInv => args_signature_scalars(arg_count, 3, 0),
Function::NegbinomDist => args_signature_scalars(arg_count, 4, 0),
Function::NormDist => args_signature_scalars(arg_count, 4, 0),
Function::NormInv => args_signature_scalars(arg_count, 3, 0),
Function::NormSdist => args_signature_scalars(arg_count, 2, 0),
Function::NormSInv => args_signature_scalars(arg_count, 1, 0),
Function::Pearson => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::Phi => args_signature_scalars(arg_count, 1, 0),
Function::PoissonDist => args_signature_scalars(arg_count, 3, 0),
Function::Standardize => args_signature_scalars(arg_count, 3, 0),
Function::StDevP => vec![Signature::Vector; arg_count],
Function::StDevS => vec![Signature::Vector; arg_count],
Function::Stdeva => vec![Signature::Vector; arg_count],
Function::Stdevpa => vec![Signature::Vector; arg_count],
Function::TDist => args_signature_scalars(arg_count, 3, 0),
Function::TDist2T => args_signature_scalars(arg_count, 2, 0),
Function::TDistRT => args_signature_scalars(arg_count, 2, 0),
Function::TInv => args_signature_scalars(arg_count, 2, 0),
Function::TInv2T => args_signature_scalars(arg_count, 2, 0),
Function::TTest => {
if arg_count == 4 {
vec![
Signature::Vector,
Signature::Vector,
Signature::Scalar,
Signature::Scalar,
]
} else {
vec![Signature::Error; arg_count]
}
}
Function::VarP => vec![Signature::Vector; arg_count],
Function::VarS => vec![Signature::Vector; arg_count],
Function::VarpA => vec![Signature::Vector; arg_count],
Function::VarA => vec![Signature::Vector; arg_count],
Function::WeibullDist => args_signature_scalars(arg_count, 4, 0),
Function::ZTest => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Scalar]
} else if arg_count == 3 {
vec![Signature::Vector, Signature::Scalar, Signature::Scalar]
} else {
vec![Signature::Error; arg_count]
}
}
} }
} }
@@ -990,6 +1090,7 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Valuetotext => not_implemented(args), Function::Valuetotext => not_implemented(args),
Function::Average => not_implemented(args), Function::Average => not_implemented(args),
Function::Averagea => not_implemented(args), Function::Averagea => not_implemented(args),
Function::Avedev => not_implemented(args),
Function::Averageif => not_implemented(args), Function::Averageif => not_implemented(args),
Function::Averageifs => not_implemented(args), Function::Averageifs => not_implemented(args),
Function::Count => not_implemented(args), Function::Count => not_implemented(args),
@@ -1165,5 +1266,61 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Dvar => not_implemented(args), Function::Dvar => not_implemented(args),
Function::Dvarp => not_implemented(args), Function::Dvarp => not_implemented(args),
Function::Dstdevp => not_implemented(args), Function::Dstdevp => not_implemented(args),
Function::BetaDist => StaticResult::Scalar,
Function::BetaInv => StaticResult::Scalar,
Function::BinomDist => StaticResult::Scalar,
Function::BinomDistRange => StaticResult::Scalar,
Function::BinomInv => StaticResult::Scalar,
Function::ChisqDist => StaticResult::Scalar,
Function::ChisqDistRT => StaticResult::Scalar,
Function::ChisqInv => StaticResult::Scalar,
Function::ChisqInvRT => StaticResult::Scalar,
Function::ChisqTest => StaticResult::Scalar,
Function::ConfidenceNorm => StaticResult::Scalar,
Function::ConfidenceT => StaticResult::Scalar,
Function::CovarianceP => StaticResult::Scalar,
Function::CovarianceS => StaticResult::Scalar,
Function::Devsq => StaticResult::Scalar,
Function::ExponDist => StaticResult::Scalar,
Function::FDist => StaticResult::Scalar,
Function::FDistRT => StaticResult::Scalar,
Function::FInv => StaticResult::Scalar,
Function::FInvRT => StaticResult::Scalar,
Function::Fisher => StaticResult::Scalar,
Function::FisherInv => StaticResult::Scalar,
Function::Gamma => StaticResult::Scalar,
Function::GammaDist => StaticResult::Scalar,
Function::GammaInv => StaticResult::Scalar,
Function::GammaLn => StaticResult::Scalar,
Function::GammaLnPrecise => StaticResult::Scalar,
Function::HypGeomDist => StaticResult::Scalar,
Function::LogNormDist => StaticResult::Scalar,
Function::LogNormInv => StaticResult::Scalar,
Function::NegbinomDist => StaticResult::Scalar,
Function::NormDist => StaticResult::Scalar,
Function::NormInv => StaticResult::Scalar,
Function::NormSdist => StaticResult::Scalar,
Function::NormSInv => StaticResult::Scalar,
Function::Pearson => StaticResult::Scalar,
Function::Phi => StaticResult::Scalar,
Function::PoissonDist => StaticResult::Scalar,
Function::Standardize => StaticResult::Scalar,
Function::StDevP => StaticResult::Scalar,
Function::StDevS => StaticResult::Scalar,
Function::Stdeva => StaticResult::Scalar,
Function::Stdevpa => StaticResult::Scalar,
Function::TDist => StaticResult::Scalar,
Function::TDist2T => StaticResult::Scalar,
Function::TDistRT => StaticResult::Scalar,
Function::TInv => StaticResult::Scalar,
Function::TInv2T => StaticResult::Scalar,
Function::TTest => StaticResult::Scalar,
Function::VarP => StaticResult::Scalar,
Function::VarS => StaticResult::Scalar,
Function::VarpA => StaticResult::Scalar,
Function::VarA => StaticResult::Scalar,
Function::WeibullDist => StaticResult::Scalar,
Function::ZTest => StaticResult::Scalar,
} }
} }

View File

@@ -190,6 +190,98 @@ pub enum Function {
Minifs, Minifs,
Geomean, Geomean,
Avedev,
BetaDist,
BetaInv,
BinomDist,
BinomDistRange,
BinomInv,
ChisqDist,
ChisqDistRT,
ChisqInv,
ChisqInvRT,
ChisqTest,
ConfidenceNorm,
ConfidenceT,
// Correl,
CovarianceP,
CovarianceS,
Devsq,
ExponDist,
FDist,
FDistRT,
FInv,
FInvRT,
// FTest,
Fisher,
FisherInv,
// Forecast,
Gamma,
GammaDist,
GammaInv,
GammaLn,
GammaLnPrecise,
// Gauss,
// Growth,
// Harmean,
HypGeomDist,
// Intercept,
// Kurt,
// Large,
// Linest,
// Logest,
LogNormDist,
LogNormInv,
// MaxA,
// Median,
// MinA,
// ModeMult,
// ModeSingl,
NegbinomDist,
NormDist,
NormInv,
NormSdist,
NormSInv,
Pearson,
// PercentileExc,
// PercentileInc,
// PercentrankExc,
// PercentrankInc,
// Permut,
// Permutationa,
Phi,
PoissonDist,
// Prob,
// QuartileExc,
// QuartileInc,
// RankAvg,
// RankEq,
// Rsq
// Skew,
// SkewP,
// Slope,
// Small,
Standardize,
StDevP,
StDevS,
Stdeva,
Stdevpa,
// Steyx,
TDist,
TDist2T,
TDistRT,
TInv,
TInv2T,
TTest,
// Trend,
// Trimmean,
VarP,
VarS,
VarpA,
VarA,
WeibullDist,
ZTest,
// Date and time // Date and time
Date, Date,
Datedif, Datedif,
@@ -328,7 +420,7 @@ pub enum Function {
} }
impl Function { impl Function {
pub fn into_iter() -> IntoIter<Function, 268> { pub fn into_iter() -> IntoIter<Function, 324> {
[ [
Function::And, Function::And,
Function::False, Function::False,
@@ -453,6 +545,7 @@ impl Function {
Function::Type, Function::Type,
Function::Sheet, Function::Sheet,
Function::Average, Function::Average,
Function::Avedev,
Function::Averagea, Function::Averagea,
Function::Averageif, Function::Averageif,
Function::Averageifs, Function::Averageifs,
@@ -598,6 +691,61 @@ impl Function {
Function::Dvar, Function::Dvar,
Function::Dvarp, Function::Dvarp,
Function::Dstdevp, Function::Dstdevp,
Function::BetaDist,
Function::BetaInv,
Function::BinomDist,
Function::BinomDistRange,
Function::BinomInv,
Function::ChisqDist,
Function::ChisqDistRT,
Function::ChisqInv,
Function::ChisqInvRT,
Function::ChisqTest,
Function::ConfidenceNorm,
Function::ConfidenceT,
Function::CovarianceP,
Function::CovarianceS,
Function::Devsq,
Function::ExponDist,
Function::FDist,
Function::FDistRT,
Function::FInv,
Function::FInvRT,
Function::Fisher,
Function::FisherInv,
Function::Gamma,
Function::GammaDist,
Function::GammaInv,
Function::GammaLn,
Function::GammaLnPrecise,
Function::HypGeomDist,
Function::LogNormDist,
Function::LogNormInv,
Function::NegbinomDist,
Function::NormDist,
Function::NormInv,
Function::NormSdist,
Function::NormSInv,
Function::Pearson,
Function::Phi,
Function::PoissonDist,
Function::Standardize,
Function::StDevP,
Function::StDevS,
Function::Stdeva,
Function::Stdevpa,
Function::TDist,
Function::TDist2T,
Function::TDistRT,
Function::TInv,
Function::TInv2T,
Function::TTest,
Function::VarP,
Function::VarS,
Function::VarpA,
Function::VarA,
Function::WeibullDist,
Function::ZTest,
] ]
.into_iter() .into_iter()
} }
@@ -659,6 +807,12 @@ impl Function {
Function::Sec => "_xlfn.SEC".to_string(), Function::Sec => "_xlfn.SEC".to_string(),
Function::Sech => "_xlfn.SECH".to_string(), Function::Sech => "_xlfn.SECH".to_string(),
Function::Acot => "_xlfn.ACOT".to_string(), Function::Acot => "_xlfn.ACOT".to_string(),
Function::GammaLnPrecise => "_xlfn.GAMMALN.PRECISE".to_string(),
Function::Gamma => "_xlfn.GAMMA".to_string(),
Function::GammaInv => "_xlfn.GAMMA.INV".to_string(),
Function::GammaLn => "_xlfn.GAMMALN".to_string(),
Function::BetaDist => "_xlfn.BETA.DIST".to_string(),
Function::BetaInv => "_xlfn.BETA.INV".to_string(),
_ => self.to_string(), _ => self.to_string(),
} }
@@ -811,6 +965,7 @@ impl Function {
"AVERAGE" => Some(Function::Average), "AVERAGE" => Some(Function::Average),
"AVERAGEA" => Some(Function::Averagea), "AVERAGEA" => Some(Function::Averagea),
"AVEDEV" => Some(Function::Avedev),
"AVERAGEIF" => Some(Function::Averageif), "AVERAGEIF" => Some(Function::Averageif),
"AVERAGEIFS" => Some(Function::Averageifs), "AVERAGEIFS" => Some(Function::Averageifs),
"COUNT" => Some(Function::Count), "COUNT" => Some(Function::Count),
@@ -957,6 +1112,62 @@ impl Function {
"DVARP" => Some(Function::Dvarp), "DVARP" => Some(Function::Dvarp),
"DSTDEVP" => Some(Function::Dstdevp), "DSTDEVP" => Some(Function::Dstdevp),
"BETA.DIST" | "_XLFN.BETA.DIST" => Some(Function::BetaDist),
"BETA.INV" | "_XLFN.BETA.INV" => Some(Function::BetaInv),
"BINOM.DIST" => Some(Function::BinomDist),
"BINOM.DIST.RANGE" => Some(Function::BinomDistRange),
"BINOM.INV" => Some(Function::BinomInv),
"CHISQ.DIST" => Some(Function::ChisqDist),
"CHISQ.DIST.RT" => Some(Function::ChisqDistRT),
"CHISQ.INV" => Some(Function::ChisqInv),
"CHISQ.INV.RT" => Some(Function::ChisqInvRT),
"CHISQ.TEST" => Some(Function::ChisqTest),
"CONFIDENCE.NORM" => Some(Function::ConfidenceNorm),
"CONFIDENCE.T" => Some(Function::ConfidenceT),
"COVARIANCE.P" => Some(Function::CovarianceP),
"COVARIANCE.S" => Some(Function::CovarianceS),
"DEVSQ" => Some(Function::Devsq),
"EXPON.DIST" => Some(Function::ExponDist),
"F.DIST" => Some(Function::FDist),
"F.DIST.RT" => Some(Function::FDistRT),
"F.INV" => Some(Function::FInv),
"F.INV.RT" => Some(Function::FInvRT),
"FISHER" => Some(Function::Fisher),
"FISHERINV" => Some(Function::FisherInv),
"GAMMA" | "_XLFN.GAMMA" => Some(Function::Gamma),
"GAMMA.DIST" | "_XLFN.GAMMA.DIST" => Some(Function::GammaDist),
"GAMMA.INV" | "_XLFN.GAMMA.INV" => Some(Function::GammaInv),
"GAMMALN" | "_XLFN.GAMMALN" => Some(Function::GammaLn),
"GAMMALN.PRECISE" | "_XLFN.GAMMALN.PRECISE" => Some(Function::GammaLnPrecise),
"HYPGEOM.DIST" => Some(Function::HypGeomDist),
"LOGNORM.DIST" => Some(Function::LogNormDist),
"LOGNORM.INV" => Some(Function::LogNormInv),
"NEGBINOM.DIST" => Some(Function::NegbinomDist),
"NORM.DIST" => Some(Function::NormDist),
"NORM.INV" => Some(Function::NormInv),
"NORM.S.DIST" => Some(Function::NormSdist),
"NORM.S.INV" => Some(Function::NormSInv),
"PEARSON" => Some(Function::Pearson),
"PHI" => Some(Function::Phi),
"POISSON.DIST" => Some(Function::PoissonDist),
"STANDARDIZE" => Some(Function::Standardize),
"STDEV.P" => Some(Function::StDevP),
"STDEV.S" => Some(Function::StDevS),
"STDEVA" => Some(Function::Stdeva),
"STDEVPA" => Some(Function::Stdevpa),
"T.DIST" => Some(Function::TDist),
"T.DIST.2T" => Some(Function::TDist2T),
"T.DIST.RT" => Some(Function::TDistRT),
"T.INV" => Some(Function::TInv),
"T.INV.2T" => Some(Function::TInv2T),
"T.TEST" => Some(Function::TTest),
"VAR.P" => Some(Function::VarP),
"VAR.S" => Some(Function::VarS),
"VARPA" => Some(Function::VarpA),
"VARA" => Some(Function::VarA),
"WEIBULL.DIST" => Some(Function::WeibullDist),
"Z.TEST" => Some(Function::ZTest),
_ => None, _ => None,
} }
} }
@@ -1065,6 +1276,7 @@ impl fmt::Display for Function {
Function::Sheet => write!(f, "SHEET"), Function::Sheet => write!(f, "SHEET"),
Function::Average => write!(f, "AVERAGE"), Function::Average => write!(f, "AVERAGE"),
Function::Averagea => write!(f, "AVERAGEA"), Function::Averagea => write!(f, "AVERAGEA"),
Function::Avedev => write!(f, "AVEDEV"),
Function::Averageif => write!(f, "AVERAGEIF"), Function::Averageif => write!(f, "AVERAGEIF"),
Function::Averageifs => write!(f, "AVERAGEIFS"), Function::Averageifs => write!(f, "AVERAGEIFS"),
Function::Count => write!(f, "COUNT"), Function::Count => write!(f, "COUNT"),
@@ -1234,6 +1446,62 @@ impl fmt::Display for Function {
Function::Dvar => write!(f, "DVAR"), Function::Dvar => write!(f, "DVAR"),
Function::Dvarp => write!(f, "DVARP"), Function::Dvarp => write!(f, "DVARP"),
Function::Dstdevp => write!(f, "DSTDEVP"), Function::Dstdevp => write!(f, "DSTDEVP"),
Function::BetaDist => write!(f, "BETA.DIST"),
Function::BetaInv => write!(f, "BETA.INV"),
Function::BinomDist => write!(f, "BINOM.DIST"),
Function::BinomDistRange => write!(f, "BINOM.DIST.RANGE"),
Function::BinomInv => write!(f, "BINOM.INV"),
Function::ChisqDist => write!(f, "CHISQ.DIST"),
Function::ChisqDistRT => write!(f, "CHISQ.DIST.RT"),
Function::ChisqInv => write!(f, "CHISQ.INV"),
Function::ChisqInvRT => write!(f, "CHISQ.INV.RT"),
Function::ChisqTest => write!(f, "CHISQ.TEST"),
Function::ConfidenceNorm => write!(f, "CONFIDENCE.NORM"),
Function::ConfidenceT => write!(f, "CONFIDENCE.T"),
Function::CovarianceP => write!(f, "COVARIANCE.P"),
Function::CovarianceS => write!(f, "COVARIANCE.S"),
Function::Devsq => write!(f, "DEVSQ"),
Function::ExponDist => write!(f, "EXPON.DIST"),
Function::FDist => write!(f, "F.DIST"),
Function::FDistRT => write!(f, "F.DIST.RT"),
Function::FInv => write!(f, "F.INV"),
Function::FInvRT => write!(f, "F.INV.RT"),
Function::Fisher => write!(f, "FISHER"),
Function::FisherInv => write!(f, "FISHERINV"),
Function::Gamma => write!(f, "GAMMA"),
Function::GammaDist => write!(f, "GAMMA.DIST"),
Function::GammaInv => write!(f, "GAMMA.INV"),
Function::GammaLn => write!(f, "GAMMALN"),
Function::GammaLnPrecise => write!(f, "GAMMALN.PRECISE"),
Function::HypGeomDist => write!(f, "HYPGEOM.DIST"),
Function::LogNormDist => write!(f, "LOGNORM.DIST"),
Function::LogNormInv => write!(f, "LOGNORM.INV"),
Function::NegbinomDist => write!(f, "NEGBINOM.DIST"),
Function::NormDist => write!(f, "NORM.DIST"),
Function::NormInv => write!(f, "NORM.INV"),
Function::NormSdist => write!(f, "NORM.S.DIST"),
Function::NormSInv => write!(f, "NORM.S.INV"),
Function::Pearson => write!(f, "PEARSON"),
Function::Phi => write!(f, "PHI"),
Function::PoissonDist => write!(f, "POISSON.DIST"),
Function::Standardize => write!(f, "STANDARDIZE"),
Function::StDevP => write!(f, "STDEV.P"),
Function::StDevS => write!(f, "STDEV.S"),
Function::Stdeva => write!(f, "STDEVA"),
Function::Stdevpa => write!(f, "STDEVPA"),
Function::TDist => write!(f, "T.DIST"),
Function::TDist2T => write!(f, "T.DIST.2T"),
Function::TDistRT => write!(f, "T.DIST.RT"),
Function::TInv => write!(f, "T.INV"),
Function::TInv2T => write!(f, "T.INV.2T"),
Function::TTest => write!(f, "T.TEST"),
Function::VarP => write!(f, "VAR.P"),
Function::VarS => write!(f, "VAR.S"),
Function::VarpA => write!(f, "VARPA"),
Function::VarA => write!(f, "VARA"),
Function::WeibullDist => write!(f, "WEIBULL.DIST"),
Function::ZTest => write!(f, "Z.TEST"),
} }
} }
} }
@@ -1354,6 +1622,7 @@ impl Model {
Function::Sheet => self.fn_sheet(args, cell), Function::Sheet => self.fn_sheet(args, cell),
Function::Average => self.fn_average(args, cell), Function::Average => self.fn_average(args, cell),
Function::Averagea => self.fn_averagea(args, cell), Function::Averagea => self.fn_averagea(args, cell),
Function::Avedev => self.fn_avedev(args, cell),
Function::Averageif => self.fn_averageif(args, cell), Function::Averageif => self.fn_averageif(args, cell),
Function::Averageifs => self.fn_averageifs(args, cell), Function::Averageifs => self.fn_averageifs(args, cell),
Function::Count => self.fn_count(args, cell), Function::Count => self.fn_count(args, cell),
@@ -1530,6 +1799,61 @@ impl Model {
Function::Dvar => self.fn_dvar(args, cell), Function::Dvar => self.fn_dvar(args, cell),
Function::Dvarp => self.fn_dvarp(args, cell), Function::Dvarp => self.fn_dvarp(args, cell),
Function::Dstdevp => self.fn_dstdevp(args, cell), Function::Dstdevp => self.fn_dstdevp(args, cell),
Function::BetaDist => self.fn_beta_dist(args, cell),
Function::BetaInv => self.fn_beta_inv(args, cell),
Function::BinomDist => self.fn_binom_dist(args, cell),
Function::BinomDistRange => self.fn_binom_dist_range(args, cell),
Function::BinomInv => self.fn_binom_inv(args, cell),
Function::ChisqDist => self.fn_chisq_dist(args, cell),
Function::ChisqDistRT => self.fn_chisq_dist_rt(args, cell),
Function::ChisqInv => self.fn_chisq_inv(args, cell),
Function::ChisqInvRT => self.fn_chisq_inv_rt(args, cell),
Function::ChisqTest => self.fn_chisq_test(args, cell),
Function::ConfidenceNorm => self.fn_confidence_norm(args, cell),
Function::ConfidenceT => self.fn_confidence_t(args, cell),
Function::CovarianceP => self.fn_covariance_p(args, cell),
Function::CovarianceS => self.fn_covariance_s(args, cell),
Function::Devsq => self.fn_devsq(args, cell),
Function::ExponDist => self.fn_expon_dist(args, cell),
Function::FDist => self.fn_f_dist(args, cell),
Function::FDistRT => self.fn_f_dist_rt(args, cell),
Function::FInv => self.fn_f_inv(args, cell),
Function::FInvRT => self.fn_f_inv_rt(args, cell),
Function::Fisher => self.fn_fisher(args, cell),
Function::FisherInv => self.fn_fisher_inv(args, cell),
Function::Gamma => self.fn_gamma(args, cell),
Function::GammaDist => self.fn_gamma_dist(args, cell),
Function::GammaInv => self.fn_gamma_inv(args, cell),
Function::GammaLn => self.fn_gamma_ln(args, cell),
Function::GammaLnPrecise => self.fn_gamma_ln_precise(args, cell),
Function::HypGeomDist => self.fn_hyp_geom_dist(args, cell),
Function::LogNormDist => self.fn_log_norm_dist(args, cell),
Function::LogNormInv => self.fn_log_norm_inv(args, cell),
Function::NegbinomDist => self.fn_negbinom_dist(args, cell),
Function::NormDist => self.fn_norm_dist(args, cell),
Function::NormInv => self.fn_norm_inv(args, cell),
Function::NormSdist => self.fn_norm_s_dist(args, cell),
Function::NormSInv => self.fn_norm_s_inv(args, cell),
Function::Pearson => self.fn_pearson(args, cell),
Function::Phi => self.fn_phi(args, cell),
Function::PoissonDist => self.fn_poisson_dist(args, cell),
Function::Standardize => self.fn_standardize(args, cell),
Function::StDevP => self.fn_stdev_p(args, cell),
Function::StDevS => self.fn_stdev_s(args, cell),
Function::Stdeva => self.fn_stdeva(args, cell),
Function::Stdevpa => self.fn_stdevpa(args, cell),
Function::TDist => self.fn_t_dist(args, cell),
Function::TDist2T => self.fn_t_dist_2t(args, cell),
Function::TDistRT => self.fn_t_dist_rt(args, cell),
Function::TInv => self.fn_t_inv(args, cell),
Function::TInv2T => self.fn_t_inv_2t(args, cell),
Function::TTest => self.fn_t_test(args, cell),
Function::VarP => self.fn_var_p(args, cell),
Function::VarS => self.fn_var_s(args, cell),
Function::VarpA => self.fn_varpa(args, cell),
Function::VarA => self.fn_vara(args, cell),
Function::WeibullDist => self.fn_weibull_dist(args, cell),
Function::ZTest => self.fn_z_test(args, cell),
} }
} }
} }

View File

@@ -0,0 +1,213 @@
use statrs::distribution::{Beta, Continuous, ContinuousCDF};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// BETA.DIST(x, alpha, beta, cumulative, [A], [B])
pub(crate) fn fn_beta_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if !(4..=6).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_param = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// cumulative argument: interpret like Excel
let cumulative = match self.evaluate_node_in_context(&args[3], cell) {
CalcResult::Boolean(b) => b,
CalcResult::Number(n) => n != 0.0,
CalcResult::String(s) => {
let up = s.to_ascii_uppercase();
if up == "TRUE" {
true
} else if up == "FALSE" {
false
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "cumulative must be TRUE/FALSE or numeric".to_string(),
};
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Invalid cumulative argument".to_string(),
}
}
};
// Optional A, B
let a = if arg_count >= 5 {
match self.get_number_no_bools(&args[4], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
0.0
};
let b = if arg_count >= 6 {
match self.get_number_no_bools(&args[5], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
1.0
};
// Excel: alpha <= 0 or beta <= 0 → #NUM!
if alpha <= 0.0 || beta_param <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in BETA.DIST".to_string(),
);
}
// Excel: if x < A, x > B, or A = B → #NUM!
if b == a || x < a || x > b {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be between A and B and A < B in BETA.DIST".to_string(),
);
}
// Transform to standard Beta(0,1)
let width = b - a;
let t = (x - a) / width;
let dist = match Beta::new(alpha, beta_param) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Beta distribution".to_string(),
)
}
};
let result = if cumulative {
dist.cdf(t)
} else {
// general-interval beta pdf: f_X(x) = f_T(t) / (B - A), t=(x-A)/(B-A)
dist.pdf(t) / width
};
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BETA.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_beta_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if !(3..=5).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_param = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let a = if arg_count >= 4 {
match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
0.0
};
let b = if arg_count >= 5 {
match self.get_number_no_bools(&args[4], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
1.0
};
if alpha <= 0.0 || beta_param <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in BETA.INV".to_string(),
);
}
// probability <= 0 or probability > 1 → #NUM!
if p <= 0.0 || p > 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in (0,1] in BETA.INV".to_string(),
);
}
if b <= a {
return CalcResult::new_error(
Error::NUM,
cell,
"A must be < B in BETA.INV".to_string(),
);
}
let dist = match Beta::new(alpha, beta_param) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Beta distribution".to_string(),
)
}
};
let t = dist.inverse_cdf(p);
if t.is_nan() || t.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BETA.INV".to_string(),
);
}
// Map back from [0,1] to [A,B]
let x = a + t * (b - a);
CalcResult::Number(x)
}
}

View File

@@ -0,0 +1,311 @@
use statrs::distribution::{Binomial, Discrete, DiscreteCDF};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_binom_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
// number_s
let number_s = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// trials
let trials = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// cumulative (logical)
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Domain checks
if trials < 0.0
|| number_s < 0.0
|| number_s > trials
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.DIST".to_string(),
);
}
// Limit to u64
if trials > u64::MAX as f64 {
return CalcResult::new_error(
Error::NUM,
cell,
"Number of trials too large".to_string(),
);
}
let n = trials as u64;
let k = number_s as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if prob.is_nan() || prob.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BINOM.DIST".to_string(),
);
}
CalcResult::Number(prob)
}
pub(crate) fn fn_binom_dist_range(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() < 3 || args.len() > 4 {
return CalcResult::new_args_number_error(cell);
}
// trials
let trials = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
// number_s (lower)
let number_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_s2 (upper, optional)
let number_s2 = if args.len() == 4 {
match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
}
} else {
number_s
};
if trials < 0.0
|| number_s < 0.0
|| number_s2 < 0.0
|| number_s > number_s2
|| number_s2 > trials
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.DIST.RANGE".to_string(),
);
}
if trials > u64::MAX as f64 {
return CalcResult::new_error(
Error::NUM,
cell,
"Number of trials too large".to_string(),
);
}
let n = trials as u64;
let lower = number_s as u64;
let upper = number_s2 as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
let prob = if lower == 0 {
dist.cdf(upper)
} else {
let cdf_upper = dist.cdf(upper);
let cdf_below_lower = dist.cdf(lower - 1);
cdf_upper - cdf_below_lower
};
if prob.is_nan() || prob.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BINOM.DIST.RANGE".to_string(),
);
}
CalcResult::Number(prob)
}
pub(crate) fn fn_binom_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
// trials
let trials = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
// alpha
let alpha = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if trials < 0.0
|| trials > u64::MAX as f64
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
|| alpha.is_nan()
|| !(0.0..=1.0).contains(&alpha)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.INV".to_string(),
);
}
let n = trials as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
// DiscreteCDF::inverse_cdf returns u64 for binomial
let k = statrs::distribution::DiscreteCDF::inverse_cdf(&dist, alpha);
CalcResult::Number(k as f64)
}
pub(crate) fn fn_negbinom_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
use statrs::distribution::{Discrete, DiscreteCDF, NegativeBinomial};
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let number_f = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let number_s = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let probability_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if number_f < 0.0 || number_s < 1.0 || !(0.0..=1.0).contains(&probability_s) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
// Guard against absurdly large failures that won't fit in u64
if number_f > (u64::MAX as f64) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
let dist = match NegativeBinomial::new(number_s, probability_s) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
}
}
};
let f_u = number_f as u64;
let result = if cumulative {
dist.cdf(f_u)
} else {
dist.pmf(f_u)
};
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,565 @@
use statrs::distribution::{ChiSquared, Continuous, ContinuousCDF};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
// Helper to check if two shapes are the same or compatible 1D shapes
pub(crate) fn is_same_shape_or_1d(rows1: i32, cols1: i32, rows2: i32, cols2: i32) -> bool {
(rows1 == rows2 && cols1 == cols2)
|| (rows1 == 1 && cols2 == 1 && cols1 == rows2)
|| (rows2 == 1 && cols1 == 1 && cols2 == rows1)
}
impl Model {
// CHISQ.DIST(x, deg_freedom, cumulative)
pub(crate) fn fn_chisq_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in CHISQ.DIST".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.DIST".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.DIST".to_string(),
);
}
CalcResult::Number(result)
}
// CHISQ.DIST.RT(x, deg_freedom)
pub(crate) fn fn_chisq_dist_rt(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df_raw = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = df_raw.trunc();
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in CHISQ.DIST.RT".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.DIST.RT".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
// Right-tail probability: P(X > x).
// Use sf(x) directly for better numerical properties than 1 - cdf(x).
let result = dist.sf(x);
if result.is_nan() || result.is_infinite() || result < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.DIST.RT".to_string(),
);
}
CalcResult::Number(result)
}
// CHISQ.INV(probability, deg_freedom)
pub(crate) fn fn_chisq_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// if probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in CHISQ.INV".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.INV".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.INV".to_string(),
);
}
CalcResult::Number(x)
}
// CHISQ.INV.RT(probability, deg_freedom)
pub(crate) fn fn_chisq_inv_rt(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df_raw = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = df_raw.trunc();
// if probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in CHISQ.INV.RT".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.INV.RT".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
// Right-tail inverse: p = P(X > x) = SF(x) = 1 - CDF(x)
// So x = inverse_cdf(1 - p).
let x = dist.inverse_cdf(1.0 - p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.INV.RT".to_string(),
);
}
CalcResult::Number(x)
}
pub(crate) fn values_from_range(
&mut self,
left: CellReferenceIndex,
right: CellReferenceIndex,
) -> Result<Vec<Option<f64>>, CalcResult> {
let mut values = Vec::new();
for row_offset in 0..=(right.row - left.row) {
for col_offset in 0..=(right.column - left.column) {
let cell_ref = CellReferenceIndex {
sheet: left.sheet,
row: left.row + row_offset,
column: left.column + col_offset,
};
let cell_value = self.evaluate_cell(cell_ref);
match cell_value {
CalcResult::Number(v) => {
values.push(Some(v));
}
error @ CalcResult::Error { .. } => return Err(error),
_ => {
values.push(None);
}
}
}
}
Ok(values)
}
pub(crate) fn values_from_array(
&mut self,
array: Vec<Vec<ArrayNode>>,
) -> Result<Vec<Option<f64>>, Error> {
let mut values = Vec::new();
for row in array {
for item in row {
match item {
ArrayNode::Number(f) => {
values.push(Some(f));
}
ArrayNode::Error(error) => {
return Err(error);
}
_ => {
values.push(None);
}
}
}
}
Ok(values)
}
// CHISQ.TEST(actual_range, expected_range)
pub(crate) fn fn_chisq_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let actual_range = self.evaluate_node_in_context(&args[0], cell);
let expected_range = self.evaluate_node_in_context(&args[1], cell);
let (width, height, values_left, values_right) = match (actual_range, expected_range) {
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Range {
left: l2,
right: r2,
},
) => {
if l1.sheet != l2.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_range(l1, r1) {
Err(error) => {
return error;
}
Ok(v) => v,
};
let values_right = match self.values_from_range(l2, r2) {
Err(error) => {
return error;
}
Ok(v) => v,
};
(rows1, cols1, values_left, values_right)
}
(
CalcResult::Array(left),
CalcResult::Range {
left: l2,
right: r2,
},
) => {
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
let rows1 = left.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Array and range must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
Ok(v) => v,
};
let values_right = match self.values_from_range(l2, r2) {
Err(error) => {
return error;
}
Ok(v) => v,
};
(rows2, cols2, values_left, values_right)
}
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Array(right),
) => {
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = right.len() as i32;
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Range and array must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_range(l1, r1) {
Err(error) => {
return error;
}
Ok(v) => v,
};
let values_right = match self.values_from_array(right) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
Ok(v) => v,
};
(rows1, cols1, values_left, values_right)
}
(CalcResult::Array(left), CalcResult::Array(right)) => {
let rows1 = left.len() as i32;
let rows2 = right.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Arrays must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
Ok(v) => v,
};
let values_right = match self.values_from_array(right) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
Ok(v) => v,
};
(rows1, cols1, values_left, values_right)
}
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Both arguments must be ranges or arrays".to_string(),
);
}
};
let mut values = Vec::with_capacity(values_left.len());
// Now we have:
// - values: flattened (observed, expected)
// - width, height: shape
for i in 0..values_left.len() {
match (values_left[i], values_right[i]) {
(Some(v1), Some(v2)) => {
values.push((v1, v2));
}
_ => {
values.push((1.0, 1.0));
}
}
}
if width == 0 || height == 0 || values.len() < 2 {
return CalcResult::new_error(
Error::NUM,
cell,
"CHISQ.TEST requires at least two data points".to_string(),
);
}
let mut chi2 = 0.0;
for (obs, exp) in &values {
if *obs < 0.0 || *exp < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Negative value in CHISQ.TEST data".to_string(),
);
}
if *exp == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero expected value in CHISQ.TEST".to_string(),
);
}
let diff = obs - exp;
chi2 += (diff * diff) / exp;
}
if chi2 < 0.0 && chi2 > -1e-12 {
chi2 = 0.0;
}
let total = width * height;
if total <= 1 {
return CalcResult::new_error(
Error::NUM,
cell,
"CHISQ.TEST degrees of freedom is zero".to_string(),
);
}
let df = if width > 1 && height > 1 {
(width - 1) * (height - 1)
} else {
total - 1
};
let dist = match ChiSquared::new(df as f64) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid degrees of freedom in CHISQ.TEST".to_string(),
);
}
};
let mut p = 1.0 - dist.cdf(chi2);
// clamp tiny fp noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -1,14 +1,10 @@
use crate::constants::{LAST_COLUMN, LAST_ROW}; use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex; use crate::expressions::types::CellReferenceIndex;
use crate::{ use crate::{
calc_result::{CalcResult, Range}, calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
expressions::parser::Node,
expressions::token::Error,
model::Model,
}; };
use super::util::build_criteria;
impl Model { impl Model {
pub(crate) fn fn_average(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult { pub(crate) fn fn_average(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() { if args.is_empty() {
@@ -90,7 +86,6 @@ impl Model {
} }
CalcResult::Number(sum / count) CalcResult::Number(sum / count)
} }
pub(crate) fn fn_averagea(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult { pub(crate) fn fn_averagea(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() { if args.is_empty() {
return CalcResult::new_args_number_error(cell); return CalcResult::new_args_number_error(cell);
@@ -324,350 +319,26 @@ impl Model {
CalcResult::Number(result) CalcResult::Number(result)
} }
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult { pub(crate) fn fn_avedev(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[1].clone()];
self.fn_countifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// AVERAGEIF(criteria_range, criteria, [average_range])
/// if average_rage is missing then criteria_range will be used
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 2 || !args_count.is_multiple_of(2) {
return CalcResult::new_args_number_error(cell);
}
let case_count = args_count / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 0..case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
if result.is_error() {
return result;
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let mut total = 0.0;
let first_range = &ranges[0];
let left_row = first_range.left.row;
let left_column = first_range.left.column;
let right_row = first_range.right.row;
let right_column = first_range.right.column;
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
Ok(s) => s.dimension(),
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
)
}
};
let max_row = dimension.max_row;
let max_column = dimension.max_column;
let open_row = left_row == 1 && right_row == LAST_ROW;
let open_column = left_column == 1 && right_column == LAST_COLUMN;
for row in left_row..right_row + 1 {
if open_row && row > max_row {
// If the row is larger than the max row in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
}
break;
}
for column in left_column..right_column + 1 {
if open_column && column > max_column {
// If the column is larger than the max column in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += (LAST_COLUMN - max_column) as f64;
}
break;
}
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - first_range.left.row,
column: range.left.column + column - first_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
total += 1.0;
}
}
}
CalcResult::Number(total)
}
pub(crate) fn apply_ifs<F>(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
mut apply: F,
) -> Result<(), CalcResult>
where
F: FnMut(f64),
{
let args_count = args.len();
if args_count < 3 || args_count.is_multiple_of(2) {
return Err(CalcResult::new_args_number_error(cell));
}
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
if arg_0.is_error() {
return Err(arg_0);
}
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
Range { left, right }
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
};
let case_count = (args_count - 1) / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 1..=case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
// NB: criterion might be an error. That's ok
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
if result.is_error() {
return Err(result);
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let left_row = sum_range.left.row;
let left_column = sum_range.left.column;
let mut right_row = sum_range.right.row;
let mut right_column = sum_range.right.column;
if left_row == 1 && right_row == LAST_ROW {
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
if left_column == 1 && right_column == LAST_COLUMN {
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
for row in left_row..right_row + 1 {
for column in left_column..right_column + 1 {
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - sum_range.left.row,
column: range.left.column + column - sum_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
let v = self.evaluate_cell(CellReferenceIndex {
sheet: sum_range.left.sheet,
row,
column,
});
match v {
CalcResult::Number(n) => apply(n),
CalcResult::Error { .. } => return Err(v),
_ => {}
}
}
}
}
Ok(())
}
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let mut count = 0.0;
let average = |value: f64| {
total += value;
count += 1.0;
};
if let Err(e) = self.apply_ifs(args, cell, average) {
return e;
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "division by 0".to_string(),
};
}
CalcResult::Number(total / count)
}
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut min = f64::INFINITY;
let apply_min = |value: f64| min = value.min(min);
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
return e;
}
if min.is_infinite() {
min = 0.0;
}
CalcResult::Number(min)
}
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut max = -f64::INFINITY;
let apply_max = |value: f64| max = value.max(max);
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
return e;
}
if max.is_infinite() {
max = 0.0;
}
CalcResult::Number(max)
}
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() { if args.is_empty() {
return CalcResult::new_args_number_error(cell); return CalcResult::new_args_number_error(cell);
} }
let mut count = 0.0;
let mut product = 1.0; let mut values: Vec<f64> = Vec::new();
let mut sum = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(values: &mut Vec<f64>, sum: &mut f64, count: &mut u64, value: f64) {
values.push(value);
*sum += value;
*count += 1;
}
for arg in args { for arg in args {
match self.evaluate_node_in_context(arg, cell) { match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => { CalcResult::Number(value) => {
count += 1.0; accumulate(&mut values, &mut sum, &mut count, value);
product *= value;
}
CalcResult::Boolean(b) => {
if let Node::ReferenceKind { .. } = arg {
} else {
product *= if b { 1.0 } else { 0.0 };
count += 1.0;
}
} }
CalcResult::Range { left, right } => { CalcResult::Range { left, right } => {
if left.sheet != right.sheet { if left.sheet != right.sheet {
@@ -677,57 +348,99 @@ impl Model {
"Ranges are in different sheets".to_string(), "Ranges are in different sheets".to_string(),
); );
} }
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) { let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..=row2 {
for column in column1..=column2 {
match self.evaluate_cell(CellReferenceIndex { match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet, sheet: left.sheet,
row, row,
column, column,
}) { }) {
CalcResult::Number(value) => { CalcResult::Number(value) => {
count += 1.0; accumulate(&mut values, &mut sum, &mut count, value);
product *= value;
} }
error @ CalcResult::Error { .. } => return error, error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => { _ => {
return CalcResult::new_error( // ignore non-numeric
Error::ERROR, }
cell, }
"Unexpected Range".to_string(), }
); }
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut values, &mut sum, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
} }
_ => {}
} }
} }
} }
} }
error @ CalcResult::Error { .. } => return error, error @ CalcResult::Error { .. } => return error,
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
} else if let Ok(t) = s.parse::<f64>() {
product *= t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
_ => { _ => {
// Ignore everything else // ignore non-numeric
} }
}; }
} }
if count == 0.0 {
return CalcResult::Error { if count == 0 {
error: Error::DIV, return CalcResult::new_error(
origin: cell, Error::DIV,
message: "Division by Zero".to_string(), cell,
}; "AVEDEV with no numeric data".to_string(),
);
} }
CalcResult::Number(product.powf(1.0 / count))
let n = count as f64;
let mean = sum / n;
let mut sum_abs_dev = 0.0;
for v in &values {
sum_abs_dev += (v - mean).abs();
}
CalcResult::Number(sum_abs_dev / n)
} }
} }

View File

@@ -0,0 +1,264 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_covariance_p(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
// Same number of cells
if values1_opts.len() != values2_opts.len() {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.P requires arrays of the same size".to_string(),
);
}
// Count numeric data points in each array (ignoring text/booleans/empty)
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
if count1 == 0 || count2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.P requires at least one numeric value in each array".to_string(),
);
}
if count1 != count2 {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.P arrays must have the same number of numeric data points".to_string(),
);
}
// Build paired numeric vectors, position by position
let mut xs: Vec<f64> = Vec::with_capacity(count1);
let mut ys: Vec<f64> = Vec::with_capacity(count2);
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
xs.push(x);
ys.push(y);
}
}
let n = xs.len();
if n == 0 {
// Should be impossible given the checks above, but guard anyway
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.P has no paired numeric data points".to_string(),
);
}
let n_f = n as f64;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
for i in 0..n {
sum_x += xs[i];
sum_y += ys[i];
}
let mean_x = sum_x / n_f;
let mean_y = sum_y / n_f;
let mut sum_prod = 0.0;
for i in 0..n {
let dx = xs[i] - mean_x;
let dy = ys[i] - mean_y;
sum_prod += dx * dy;
}
let cov = sum_prod / n_f;
CalcResult::Number(cov)
}
pub(crate) fn fn_covariance_s(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
// Same number of cells
if values1_opts.len() != values2_opts.len() {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.S requires arrays of the same size".to_string(),
);
}
// Count numeric data points in each array (ignoring text/booleans/empty)
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
if count1 == 0 || count2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.S requires numeric values in each array".to_string(),
);
}
if count1 != count2 {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.S arrays must have the same number of numeric data points".to_string(),
);
}
// Build paired numeric vectors
let mut xs: Vec<f64> = Vec::with_capacity(count1);
let mut ys: Vec<f64> = Vec::with_capacity(count2);
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
xs.push(x);
ys.push(y);
}
}
let n = xs.len();
if n < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.S requires at least two paired data points".to_string(),
);
}
let n_f = n as f64;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
for i in 0..n {
sum_x += xs[i];
sum_y += ys[i];
}
let mean_x = sum_x / n_f;
let mean_y = sum_y / n_f;
let mut sum_prod = 0.0;
for i in 0..n {
let dx = xs[i] - mean_x;
let dy = ys[i] - mean_y;
sum_prod += dx * dy;
}
let cov = sum_prod / (n_f - 1.0);
CalcResult::Number(cov)
}
}

View File

@@ -0,0 +1,135 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// DEVSQ(number1, [number2], ...)
pub(crate) fn fn_devsq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
// tiny helper so we don't repeat ourselves
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if count == 0 {
// No numeric data at all
return CalcResult::new_error(
Error::DIV,
cell,
"DEVSQ with no numeric data".to_string(),
);
}
let n = count as f64;
let mut result = sumsq - (sum * sum) / n;
// Numerical noise can make result slightly negative when it should be 0
if result < 0.0 && result > -1e-12 {
result = 0.0;
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,54 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_expon_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// EXPON.DIST(x, lambda, cumulative)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let lambda = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || lambda <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for EXPON.DIST".to_string(),
};
}
let result = if cumulative {
// CDF
1.0 - (-lambda * x).exp()
} else {
// PDF
lambda * (-lambda * x).exp()
};
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for EXPON.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,299 @@
use statrs::distribution::{Continuous, ContinuousCDF, FisherSnedecor};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// FISHER(x) = 0.5 * ln((1 + x) / (1 - x))
pub(crate) fn fn_fisher(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
if x <= -1.0 || x >= 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "x must be between -1 and 1 (exclusive) in FISHER".to_string(),
};
}
let ratio = (1.0 + x) / (1.0 - x);
let result = 0.5 * ratio.ln();
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for FISHER".to_string(),
};
}
CalcResult::Number(result)
}
// FISHERINV(y) = (e^(2y) - 1) / (e^(2y) + 1) = tanh(y)
pub(crate) fn fn_fisher_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let y = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Use tanh directly to avoid overflow from exp(2y)
let result = y.tanh();
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for FISHERINV".to_string(),
};
}
CalcResult::Number(result)
}
// F.DIST(x, deg_freedom1, deg_freedom2, cumulative)
pub(crate) fn fn_f_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel domain checks
if x < 0.0 {
return CalcResult::new_error(Error::NUM, cell, "x must be >= 0 in F.DIST".to_string());
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.DIST".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_f_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// F.DIST.RT(x, deg_freedom1, deg_freedom2)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in F.DIST.RT".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.DIST.RT".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
// Right-tail probability: P(F > x) = 1 - CDF(x)
let result = 1.0 - dist.cdf(x);
if result.is_nan() || result.is_infinite() || result < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.DIST.RT".to_string(),
);
}
CalcResult::Number(result)
}
// F.INV(probability, deg_freedom1, deg_freedom2)
pub(crate) fn fn_f_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in F.INV".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.INV".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(Error::NUM, cell, "Invalid result for F.INV".to_string());
}
CalcResult::Number(x)
}
// F.INV.RT(probability, deg_freedom1, deg_freedom2)
pub(crate) fn fn_f_inv_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p > 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in (0,1] in F.INV.RT".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.INV.RT".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
// p is right-tail: p = P(F > x) = 1 - CDF(x)
let x = dist.inverse_cdf(1.0 - p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.INV.RT".to_string(),
);
}
CalcResult::Number(x)
}
}

View File

@@ -0,0 +1,194 @@
use statrs::distribution::{Continuous, ContinuousCDF, Gamma};
use statrs::function::gamma::{gamma, ln_gamma};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_gamma(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x < 0.0 && x.floor() == x {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
let result = gamma(x);
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// GAMMA.DIST(x, alpha, beta, cumulative)
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in GAMMA.DIST".to_string(),
);
}
if alpha <= 0.0 || beta_scale <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in GAMMA.DIST".to_string(),
);
}
let rate = 1.0 / beta_scale;
let dist = match Gamma::new(alpha, rate) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Gamma distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for GAMMA.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// GAMMA.INV(probability, alpha, beta)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in GAMMA.INV".to_string(),
);
}
if alpha <= 0.0 || beta_scale <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in GAMMA.INV".to_string(),
);
}
let rate = 1.0 / beta_scale;
let dist = match Gamma::new(alpha, rate) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Gamma distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for GAMMA.INV".to_string(),
);
}
CalcResult::Number(x)
}
pub(crate) fn fn_gamma_ln(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
let result = ln_gamma(x);
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma Ln function".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_ln_precise(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
self.fn_gamma_ln(args, cell)
}
}

View File

@@ -0,0 +1,87 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut count = 0.0;
let mut product = 1.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
CalcResult::Boolean(b) => {
if let Node::ReferenceKind { .. } = arg {
} else {
product *= if b { 1.0 } else { 0.0 };
count += 1.0;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Unexpected Range".to_string(),
);
}
_ => {}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
} else if let Ok(t) = s.parse::<f64>() {
product *= t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
_ => {
// Ignore everything else
}
};
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Division by Zero".to_string(),
};
}
CalcResult::Number(product.powf(1.0 / count))
}
}

View File

@@ -0,0 +1,108 @@
use statrs::distribution::{Discrete, DiscreteCDF, Hypergeometric};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// =HYPGEOM.DIST(sample_s, number_sample, population_s, number_pop, cumulative)
pub(crate) fn fn_hyp_geom_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 5 {
return CalcResult::new_args_number_error(cell);
}
// sample_s (number of successes in the sample)
let sample_s = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_sample (sample size)
let number_sample = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// population_s (number of successes in the population)
let population_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_pop (population size)
let number_pop = match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[4], cell) {
Ok(b) => b,
Err(e) => return e,
};
if sample_s < 0.0 || sample_s > f64::min(number_sample, population_s) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if sample_s < f64::max(0.0, number_sample + population_s - number_pop) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if number_sample <= 0.0 || number_sample > number_pop {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if population_s <= 0.0 || population_s > number_pop {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
let n_pop = number_pop as u64;
let k_pop = population_s as u64;
let n_sample = number_sample as u64;
let k = sample_s as u64;
let dist = match Hypergeometric::new(n_pop, k_pop, n_sample) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for hypergeometric distribution".to_string(),
)
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if !prob.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for HYPGEOM.DIST".to_string(),
};
}
CalcResult::Number(prob)
}
}

View File

@@ -0,0 +1,337 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::types::CellReferenceIndex;
use crate::functions::util::build_criteria;
use crate::{
calc_result::{CalcResult, Range},
expressions::parser::Node,
expressions::token::Error,
model::Model,
};
impl Model {
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[1].clone()];
self.fn_countifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// AVERAGEIF(criteria_range, criteria, [average_range])
/// if average_rage is missing then criteria_range will be used
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 2 || !args_count.is_multiple_of(2) {
return CalcResult::new_args_number_error(cell);
}
let case_count = args_count / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 0..case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
if result.is_error() {
return result;
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let mut total = 0.0;
let first_range = &ranges[0];
let left_row = first_range.left.row;
let left_column = first_range.left.column;
let right_row = first_range.right.row;
let right_column = first_range.right.column;
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
Ok(s) => s.dimension(),
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
)
}
};
let max_row = dimension.max_row;
let max_column = dimension.max_column;
let open_row = left_row == 1 && right_row == LAST_ROW;
let open_column = left_column == 1 && right_column == LAST_COLUMN;
for row in left_row..right_row + 1 {
if open_row && row > max_row {
// If the row is larger than the max row in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
}
break;
}
for column in left_column..right_column + 1 {
if open_column && column > max_column {
// If the column is larger than the max column in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += (LAST_COLUMN - max_column) as f64;
}
break;
}
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - first_range.left.row,
column: range.left.column + column - first_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
total += 1.0;
}
}
}
CalcResult::Number(total)
}
pub(crate) fn apply_ifs<F>(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
mut apply: F,
) -> Result<(), CalcResult>
where
F: FnMut(f64),
{
let args_count = args.len();
if args_count < 3 || args_count.is_multiple_of(2) {
return Err(CalcResult::new_args_number_error(cell));
}
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
if arg_0.is_error() {
return Err(arg_0);
}
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
Range { left, right }
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
};
let case_count = (args_count - 1) / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 1..=case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
// NB: criterion might be an error. That's ok
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
if result.is_error() {
return Err(result);
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let left_row = sum_range.left.row;
let left_column = sum_range.left.column;
let mut right_row = sum_range.right.row;
let mut right_column = sum_range.right.column;
if left_row == 1 && right_row == LAST_ROW {
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
if left_column == 1 && right_column == LAST_COLUMN {
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
for row in left_row..right_row + 1 {
for column in left_column..right_column + 1 {
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - sum_range.left.row,
column: range.left.column + column - sum_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
let v = self.evaluate_cell(CellReferenceIndex {
sheet: sum_range.left.sheet,
row,
column,
});
match v {
CalcResult::Number(n) => apply(n),
CalcResult::Error { .. } => return Err(v),
_ => {}
}
}
}
}
Ok(())
}
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let mut count = 0.0;
let average = |value: f64| {
total += value;
count += 1.0;
};
if let Err(e) = self.apply_ifs(args, cell, average) {
return e;
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "division by 0".to_string(),
};
}
CalcResult::Number(total / count)
}
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut min = f64::INFINITY;
let apply_min = |value: f64| min = value.min(min);
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
return e;
}
if min.is_infinite() {
min = 0.0;
}
CalcResult::Number(min)
}
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut max = -f64::INFINITY;
let apply_max = |value: f64| max = value.max(max);
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
return e;
}
if max.is_infinite() {
max = 0.0;
}
CalcResult::Number(max)
}
}

View File

@@ -0,0 +1,124 @@
use statrs::distribution::{Continuous, ContinuousCDF, LogNormal};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_log_norm_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel domain checks
if x <= 0.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
};
}
let dist = match LogNormal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_log_norm_inv(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
use statrs::distribution::{ContinuousCDF, LogNormal};
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Excel domain checks
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
};
}
let dist = match LogNormal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
}
}
};
let result = dist.inverse_cdf(p);
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,23 @@
mod beta;
mod binom;
mod chisq;
mod count_and_average;
mod covariance;
mod devsq;
mod exponential;
mod fisher;
mod gamma;
mod geomean;
mod hypegeom;
mod if_ifs;
mod log_normal;
mod normal;
mod pearson;
mod phi;
mod poisson;
mod standard_dev;
mod standardize;
mod t_dist;
mod variance;
mod weibull;
mod z_test;

View File

@@ -0,0 +1,325 @@
use statrs::distribution::{Continuous, ContinuousCDF, Normal, StudentsT};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// NORM.DIST(x, mean, standard_dev, cumulative)
pub(crate) fn fn_norm_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel: standard_dev must be > 0
if std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "standard_dev must be > 0 in NORM.DIST".to_string(),
};
}
let dist = match Normal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// NORM.INV(probability, mean, standard_dev)
pub(crate) fn fn_norm_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.INV".to_string(),
};
}
let dist = match Normal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.INV".to_string(),
}
}
};
let x = dist.inverse_cdf(p);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.INV".to_string(),
};
}
CalcResult::Number(x)
}
// NORM.S.DIST(z, cumulative)
pub(crate) fn fn_norm_s_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let z = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[1], cell) {
Ok(b) => b,
Err(e) => return e,
};
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Failed to construct standard normal distribution".to_string(),
}
}
};
let result = if cumulative { dist.cdf(z) } else { dist.pdf(z) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.S.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// NORM.S.INV(probability)
pub(crate) fn fn_norm_s_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "probability must be in (0,1) in NORM.S.INV".to_string(),
};
}
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Failed to construct standard normal distribution".to_string(),
}
}
};
let z = dist.inverse_cdf(p);
if !z.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.S.INV".to_string(),
};
}
CalcResult::Number(z)
}
pub(crate) fn fn_confidence_norm(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let alpha = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let size = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.floor(),
Err(e) => return e,
};
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for CONFIDENCE.NORM".to_string(),
};
}
if size < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Sample size must be at least 1".to_string(),
};
}
let normal = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Failed to construct normal distribution".to_string(),
)
}
};
let quantile = normal.inverse_cdf(1.0 - alpha / 2.0);
if !quantile.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid quantile for CONFIDENCE.NORM".to_string(),
};
}
let margin = quantile * std_dev / size.sqrt();
CalcResult::Number(margin)
}
pub(crate) fn fn_confidence_t(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let alpha = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let size = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// Domain checks
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for CONFIDENCE.T".to_string(),
};
}
// Need at least 2 observations so df = n - 1 > 0
if size < 2.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Sample size must be at least 2".to_string(),
};
}
let df = size - 1.0;
let t_dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Failed to construct Student's t distribution".to_string(),
)
}
};
// Two-sided CI => use 1 - alpha/2
let t_crit = t_dist.inverse_cdf(1.0 - alpha / 2.0);
if !t_crit.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid quantile for CONFIDENCE.T".to_string(),
};
}
let margin = t_crit * std_dev / size.sqrt();
CalcResult::Number(margin)
}
}

View File

@@ -0,0 +1,235 @@
use crate::expressions::types::CellReferenceIndex;
use crate::functions::statistical::chisq::is_same_shape_or_1d;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// PEARSON(array1, array2)
pub(crate) fn fn_pearson(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let left_arg = self.evaluate_node_in_context(&args[0], cell);
let right_arg = self.evaluate_node_in_context(&args[1], cell);
let (values_left, values_right) = match (left_arg, right_arg) {
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Range {
left: l2,
right: r2,
},
) => {
if l1.sheet != l2.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_range(l1, r1) {
Err(error) => return error,
Ok(v) => v,
};
let values_right = match self.values_from_range(l2, r2) {
Err(error) => return error,
Ok(v) => v,
};
(values_left, values_right)
}
(
CalcResult::Array(left),
CalcResult::Range {
left: l2,
right: r2,
},
) => {
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
let rows1 = left.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Array and range must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
Ok(v) => v,
};
let values_right = match self.values_from_range(l2, r2) {
Err(error) => return error,
Ok(v) => v,
};
(values_left, values_right)
}
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Array(right),
) => {
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = right.len() as i32;
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Range and array must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_range(l1, r1) {
Err(error) => return error,
Ok(v) => v,
};
let values_right = match self.values_from_array(right) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
Ok(v) => v,
};
(values_left, values_right)
}
(CalcResult::Array(left), CalcResult::Array(right)) => {
let rows1 = left.len() as i32;
let rows2 = right.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return CalcResult::new_error(
Error::VALUE,
cell,
"Arrays must be of the same shape".to_string(),
);
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
Ok(v) => v,
};
let values_right = match self.values_from_array(right) {
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
Ok(v) => v,
};
(values_left, values_right)
}
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Both arguments must be ranges or arrays".to_string(),
);
}
};
// Flatten into (x, y) pairs, skipping non-numeric entries (None)
let mut n: f64 = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_y2 = 0.0;
let mut sum_xy = 0.0;
let len = values_left.len().min(values_right.len());
for i in 0..len {
match (values_left[i], values_right[i]) {
(Some(x), Some(y)) => {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_y2 += y * y;
sum_xy += x * y;
}
_ => {
// Ignore pairs where at least one side is non-numeric
}
}
}
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"PEARSON requires at least two numeric pairs".to_string(),
);
}
// Pearson correlation:
// r = [ n*Σxy - (Σx)(Σy) ] / sqrt( [n*Σx² - (Σx)²] [n*Σy² - (Σy)²] )
let num = n * sum_xy - sum_x * sum_y;
let denom_x = n * sum_x2 - sum_x * sum_x;
let denom_y = n * sum_y2 - sum_y * sum_y;
if denom_x.abs() < 1e-15 || denom_y.abs() < 1e-15 {
// Zero variance in at least one series
return CalcResult::new_error(
Error::DIV,
cell,
"PEARSON cannot be computed when one series has zero variance".to_string(),
);
}
let denom = (denom_x * denom_y).sqrt();
let r = num / denom;
CalcResult::Number(r)
}
}

View File

@@ -0,0 +1,21 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
impl Model {
// PHI(x) = standard normal PDF at x
pub(crate) fn fn_phi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Standard normal PDF: (1 / sqrt(2π)) * exp(-x^2 / 2)
let result = (-(x * x) / 2.0).exp() / (2.0 * std::f64::consts::PI).sqrt();
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,94 @@
use statrs::distribution::{Discrete, DiscreteCDF, Poisson};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// =POISSON.DIST(x, mean, cumulative)
pub(crate) fn fn_poisson_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
// x
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// mean (lambda)
let lambda = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || lambda < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
};
}
// Guard against insane k for u64
if x < 0.0 || x > (u64::MAX as f64) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
};
}
let k = x as u64;
// Special-case lambda = 0: degenerate distribution at 0
if lambda == 0.0 {
let result = if cumulative {
// For x >= 0, P(X <= x) = 1
1.0
} else {
// P(X = 0) = 1, P(X = k>0) = 0
if k == 0 {
1.0
} else {
0.0
}
};
return CalcResult::Number(result);
}
let dist = match Poisson::new(lambda) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
}
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if !prob.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for POISSON.DIST".to_string(),
};
}
CalcResult::Number(prob)
}
}

View File

@@ -0,0 +1,519 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_stdev_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEV.P with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
// clamp tiny negatives from FP noise
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdev_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEV.S requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdeva(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEVA requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdevpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEVPA with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
}

View File

@@ -0,0 +1,38 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_standardize(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// STANDARDIZE(x, mean, standard_dev)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "standard_dev must be > 0 in STANDARDIZE".to_string(),
};
}
let z = (x - mean) / std_dev;
CalcResult::Number(z)
}
}

View File

@@ -0,0 +1,576 @@
use statrs::distribution::{Continuous, ContinuousCDF, StudentsT};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
fn mean(xs: &[f64]) -> f64 {
let n = xs.len();
if n == 0 {
return 0.0;
}
let mut s = 0.0;
for &x in xs {
s += x;
}
s / (n as f64)
}
fn sample_var(xs: &[f64]) -> f64 {
let n = xs.len();
if n < 2 {
return 0.0;
}
let m = mean(xs);
let mut s = 0.0;
for &x in xs {
let d = x - m;
s += d * d;
}
s / ((n - 1) as f64)
}
enum TTestType {
Paired,
TwoSampleEqualVar,
TwoSampleUnequalVar,
}
enum TTestTails {
OneTailed,
TwoTailed,
}
impl Model {
// T.DIST(x, deg_freedom, cumulative)
pub(crate) fn fn_t_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// T.DIST.2T(x, deg_freedom)
pub(crate) fn fn_t_dist_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "x must be >= 0 in T.DIST.2T".to_string(),
};
}
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST.2T".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST.2T".to_string(),
}
}
};
let upper_tail = 1.0 - dist.cdf(x);
let mut result = 2.0 * upper_tail;
result = result.clamp(0.0, 1.0);
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST.2T".to_string(),
};
}
CalcResult::Number(result)
}
// T.DIST.RT(x, deg_freedom)
pub(crate) fn fn_t_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST.RT".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST.RT".to_string(),
}
}
};
let result = 1.0 - dist.cdf(x);
if !result.is_finite() || result < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST.RT".to_string(),
};
}
CalcResult::Number(result)
}
// T.INV(probability, deg_freedom)
pub(crate) fn fn_t_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 || df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV".to_string(),
}
}
};
let x = dist.inverse_cdf(p);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.INV".to_string(),
};
}
CalcResult::Number(x)
}
// T.INV.2T(probability, deg_freedom)
pub(crate) fn fn_t_inv_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p > 1.0 || df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV.2T".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV.2T".to_string(),
}
}
};
// Two-sided: F(x) = 1 - p/2
let target_cdf = 1.0 - p / 2.0;
let x = dist.inverse_cdf(target_cdf);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.INV.2T".to_string(),
};
}
CalcResult::Number(x.abs())
}
// T.TEST(array1, array2, tails, type)
pub(crate) fn fn_t_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
let tails = match self.get_number(&args[2], cell) {
Ok(f) => {
let tf = f.trunc();
if tf == 1.0 {
TTestTails::OneTailed
} else if tf == 2.0 {
TTestTails::TwoTailed
} else {
return CalcResult::new_error(
Error::NUM,
cell,
"tails must be 1 or 2".to_string(),
);
}
}
Err(e) => return e,
};
let test_type = match self.get_number(&args[3], cell) {
Ok(f) => {
let tf = f.trunc();
match tf {
1.0 => TTestType::Paired,
2.0 => TTestType::TwoSampleEqualVar,
3.0 => TTestType::TwoSampleUnequalVar,
_ => {
return CalcResult::new_error(
Error::NUM,
cell,
"type must be 1, 2, or 3".to_string(),
);
}
}
}
Err(e) => return e,
};
// keep only numeric entries, ignore non-numeric (Option::None)
let values1: Vec<f64> = values1_opts.into_iter().flatten().collect();
let values2: Vec<f64> = values2_opts.into_iter().flatten().collect();
let n1 = values1.len();
let n2 = values2.len();
if n1 == 0 || n2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"T.TEST requires non-empty samples".to_string(),
);
}
let (t_stat, df) = match test_type {
TTestType::Paired => {
if n1 != n2 {
return CalcResult::new_error(
Error::NA,
cell,
"For paired T.TEST, both samples must have the same length".to_string(),
);
}
if n1 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Paired T.TEST requires at least two pairs".to_string(),
);
}
let mut diffs = Vec::with_capacity(n1);
for i in 0..n1 {
diffs.push(values1[i] - values2[i]);
}
let nd = diffs.len();
let md = mean(&diffs);
let vd = sample_var(&diffs);
if vd <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero variance in paired T.TEST".to_string(),
);
}
let sd = vd.sqrt();
let t_stat = md / (sd / (nd as f64).sqrt());
let df = (nd - 1) as f64;
(t_stat, df)
}
// 2: two-sample, equal variance (homoscedastic)
TTestType::TwoSampleEqualVar => {
if n1 < 2 || n2 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Two-sample T.TEST type 2 requires at least two values in each sample"
.to_string(),
);
}
let m1 = mean(&values1);
let m2 = mean(&values2);
let v1 = sample_var(&values1);
let v2 = sample_var(&values2);
let df_i = (n1 + n2 - 2) as i32;
if df_i <= 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Degrees of freedom must be positive in T.TEST type 2".to_string(),
);
}
let df = df_i as f64;
let sp2 = (((n1 - 1) as f64) * v1 + ((n2 - 1) as f64) * v2) / df; // pooled variance
if sp2 <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero pooled variance in T.TEST type 2".to_string(),
);
}
let denom = (sp2 * (1.0 / (n1 as f64) + 1.0 / (n2 as f64))).sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero denominator in T.TEST type 2".to_string(),
);
}
let t_stat = (m1 - m2) / denom;
(t_stat, df)
}
// two-sample, unequal variance (Welch)
TTestType::TwoSampleUnequalVar => {
if n1 < 2 || n2 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Two-sample T.TEST type 3 requires at least two values in each sample"
.to_string(),
);
}
let m1 = mean(&values1);
let m2 = mean(&values2);
let v1 = sample_var(&values1);
let v2 = sample_var(&values2);
let s1n = v1 / (n1 as f64);
let s2n = v2 / (n2 as f64);
let denom = (s1n + s2n).sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero denominator in T.TEST type 3".to_string(),
);
}
let t_stat = (m1 - m2) / denom;
let num_df = (s1n + s2n).powi(2);
let den_df = (s1n * s1n) / ((n1 - 1) as f64) + (s2n * s2n) / ((n2 - 1) as f64);
if den_df == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Invalid degrees of freedom in T.TEST type 3".to_string(),
);
}
let df = num_df / den_df;
(t_stat, df)
}
};
if df <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Degrees of freedom must be positive in T.TEST".to_string(),
);
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Student's t distribution".to_string(),
);
}
};
let t_abs = t_stat.abs();
let cdf = dist.cdf(t_abs);
let mut p = match tails {
TTestTails::OneTailed => 1.0 - cdf,
TTestTails::TwoTailed => 2.0 * (1.0 - cdf),
};
// clamp tiny fp noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -0,0 +1,518 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_var_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"VAR.P with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_var_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"VAR.S requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_vara(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..=row2 {
for column in column1..=column2 {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"VARA requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_varpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"VARPA with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
}

View File

@@ -0,0 +1,71 @@
use statrs::distribution::{Continuous, ContinuousCDF, Weibull};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// WEIBULL.DIST(x, alpha, beta, cumulative)
pub(crate) fn fn_weibull_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || alpha <= 0.0 || beta <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for WEIBULL.DIST".to_string(),
};
}
// statrs::Weibull: shape = k (alpha), scale = lambda (beta)
let dist = match Weibull::new(alpha, beta) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for WEIBULL.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for WEIBULL.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,171 @@
use statrs::distribution::{ContinuousCDF, Normal};
use crate::expressions::token::Error;
use crate::expressions::types::CellReferenceIndex;
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
impl Model {
// Z.TEST(array, x, [sigma])
pub(crate) fn fn_z_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// 2 or 3 arguments
if args.len() < 2 || args.len() > 3 {
return CalcResult::new_args_number_error(cell);
}
let array_arg = self.evaluate_node_in_context(&args[0], cell);
// Flatten first argument into Vec<Option<f64>> (numeric / non-numeric)
let values = match array_arg {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(array) => match self.values_from_array(array) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in array argument: {:?}", error),
);
}
},
CalcResult::Number(v) => vec![Some(v)],
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST first argument must be a range or array".to_string(),
);
}
};
// Collect basic stats on numeric entries
let mut sum = 0.0;
let mut count: u64 = 0;
for x in values.iter().flatten() {
sum += x;
count += 1;
}
// Excel: if array has no numeric values -> #N/A
if count == 0 {
return CalcResult::new_error(
Error::NA,
cell,
"Z.TEST array has no numeric data".to_string(),
);
}
let n = count as f64;
let mean = sum / n;
// x argument (hypothesized population mean)
let x_value = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Number(v) => v,
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST second argument (x) must be numeric".to_string(),
);
}
};
// Optional sigma
let mut sigma: Option<f64> = None;
if args.len() == 3 {
match self.evaluate_node_in_context(&args[2], cell) {
CalcResult::Number(v) => {
if v == 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Z.TEST sigma cannot be zero".to_string(),
);
}
sigma = Some(v);
}
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST sigma (third argument) must be numeric".to_string(),
);
}
}
}
// If sigma omitted, use sample standard deviation STDEV(array)
let sigma_value = if let Some(s) = sigma {
s
} else {
// Excel: if only one numeric value and sigma omitted -> #DIV/0!
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST requires at least two values when sigma is omitted".to_string(),
);
}
// Compute sum of squared deviations
let mut sumsq_dev = 0.0;
for x in values.iter().flatten() {
let d = x - mean;
sumsq_dev += d * d;
}
let var = sumsq_dev / (n - 1.0);
if var <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST standard deviation is zero".to_string(),
);
}
var.sqrt()
};
// Compute z statistic: (mean - x) / (sigma / sqrt(n))
let denom = sigma_value / n.sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST denominator is zero".to_string(),
);
}
let z = (mean - x_value) / denom;
// Standard normal CDF
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Cannot create standard normal distribution in Z.TEST".to_string(),
);
}
};
let mut p = 1.0 - dist.cdf(z);
// clamp tiny FP noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -55,12 +55,17 @@ mod test_yearfrac_basis;
pub(crate) mod util; pub(crate) mod util;
mod engineering; mod engineering;
mod statistical;
mod test_fn_offset; mod test_fn_offset;
mod test_number_format; mod test_number_format;
mod test_arrays; mod test_arrays;
mod test_combin_combina;
mod test_escape_quotes; mod test_escape_quotes;
mod test_even_odd;
mod test_exp_sign;
mod test_extend; mod test_extend;
mod test_fn_datevalue_timevalue;
mod test_fn_fv; mod test_fn_fv;
mod test_fn_round; mod test_fn_round;
mod test_fn_type; mod test_fn_type;
@@ -80,5 +85,6 @@ mod test_percentage;
mod test_set_functions_error_handling; mod test_set_functions_error_handling;
mod test_sheet_names; mod test_sheet_names;
mod test_today; mod test_today;
mod test_trigonometric_reciprocals;
mod test_types; mod test_types;
mod user_model; mod user_model;

View File

@@ -0,0 +1,22 @@
mod test_fn_avedev;
mod test_fn_binom;
mod test_fn_chisq;
mod test_fn_chisq_test;
mod test_fn_confidence;
mod test_fn_covariance;
mod test_fn_devsq;
mod test_fn_expon_dist;
mod test_fn_f;
mod test_fn_fisher;
mod test_fn_hyp_geom_dist;
mod test_fn_log_norm;
mod test_fn_norm_dist;
mod test_fn_pearson;
mod test_fn_phi;
mod test_fn_poisson;
mod test_fn_stdev;
mod test_fn_t_dist;
mod test_fn_t_test;
mod test_fn_var;
mod test_fn_weibull;
mod test_fn_z_test;

View File

@@ -0,0 +1,40 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=AVEDEV(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"7.25");
}

View File

@@ -0,0 +1,86 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_binom_dist_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.DIST(6, 10, 0.5, TRUE)");
model._set("A2", "=BINOM.DIST(6, 10, 0.5, FALSE)");
model._set("A3", "=BINOM.DIST(6, 10, 0.5)"); // wrong args
model._set("A4", "=BINOM.DIST(6, 10, 0.5, TRUE, FALSE)"); // too many args
model.evaluate();
// P(X <= 6) for X ~ Bin(10, 0.5) = 0.828125
assert_eq!(model._get_text("A1"), *"0.828125");
// P(X = 6) for X ~ Bin(10, 0.5) = 0.205078125
assert_eq!(model._get_text("A2"), *"0.205078125");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_binom_dist_range_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.DIST.RANGE(60, 0.75, 48)");
model._set("A2", "=BINOM.DIST.RANGE(60, 0.75, 45, 50)");
model._set("A3", "=BINOM.DIST.RANGE(60, 1.2, 45, 50)"); // p > 1 -> #NUM!
model._set("A4", "=BINOM.DIST.RANGE(60, 0.75, 50, 45)"); // lower > upper -> #NUM!");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.083974967");
assert_eq!(model._get_text("A2"), *"0.523629793");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
}
#[test]
fn test_fn_binom_inv_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.INV(6, 0.5, 0.75)");
model._set("A2", "=BINOM.INV(6, 0.5, -0.1)"); // alpha < 0 -> #NUM!
model._set("A3", "=BINOM.INV(6, 1.2, 0.75)"); // p > 1 -> #NUM!
model._set("A4", "=BINOM.INV(6, 0.5)"); // args error
model.evaluate();
assert_eq!(model._get_text("A1"), *"4");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_negbinom_dist_smoke() {
let mut model = new_empty_model();
// Valid: PMF (non-cumulative) and CDF (cumulative)
model._set("A1", "=NEGBINOM.DIST(10, 5, 0.25, FALSE)");
model._set("A2", "=NEGBINOM.DIST(10, 5, 0.25, TRUE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NEGBINOM.DIST(10, 5, 0.25)");
model._set("A4", "=NEGBINOM.DIST(10, 5, 0.25, TRUE, FALSE)");
// Domain errors:
// p < 0 or p > 1 -> #NUM!
model._set("A5", "=NEGBINOM.DIST(10, 5, 1.5, TRUE)");
// number_f < 0 -> #NUM!
model._set("A6", "=NEGBINOM.DIST(-1, 5, 0.25, TRUE)");
// number_s < 1 -> #NUM!
model._set("A7", "=NEGBINOM.DIST(10, 0, 0.25, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.05504866");
assert_eq!(model._get_text("A2"), *"0.313514058");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,140 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF
model._set("A1", "=CHISQ.DIST(0.5, 4, TRUE)");
// Valid: PDF
model._set("A2", "=CHISQ.DIST(0.5, 4, FALSE)");
// Valid: CDF with numeric cumulative (1 -> TRUE)
model._set("A3", "=CHISQ.DIST(0.5, 4, 1)");
// Wrong number of args -> #ERROR!
model._set("A4", "=CHISQ.DIST(0.5, 4)");
model._set("A5", "=CHISQ.DIST(0.5, 4, TRUE, FALSE)");
// Domain errors
// x < 0 -> #NUM!
model._set("A6", "=CHISQ.DIST(-1, 4, TRUE)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.DIST(0.5, 0, TRUE)");
model.evaluate();
// Values for df = 4
// CDF(0.5) ≈ 0.026499021, PDF(0.5) ≈ 0.097350098
assert_eq!(model._get_text("A1"), *"0.026499021");
assert_eq!(model._get_text("A2"), *"0.097350098");
assert_eq!(model._get_text("A3"), *"0.026499021");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_chisq_dist_rt_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.DIST.RT(0.5, 4)");
model._set("A2", "=CHISQ.DIST.RT(5, 4)");
// Too few / too many args -> #ERROR!
model._set("A3", "=CHISQ.DIST.RT(0.5)");
model._set("A4", "=CHISQ.DIST.RT(0.5, 4, 1)");
// Domain errors
// x < 0 -> #NUM!
model._set("A5", "=CHISQ.DIST.RT(-1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A6", "=CHISQ.DIST.RT(0.5, 0)");
model.evaluate();
// For df = 4:
// right tail at 0.5 ≈ 0.973500979
// right tail at 5.0 ≈ 0.287297495
assert_eq!(model._get_text("A1"), *"0.973500979");
assert_eq!(model._get_text("A2"), *"0.287297495");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_chisq_inv_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.INV(0.95, 4)");
model._set("A2", "=CHISQ.INV(0.1, 10)");
// Wrong number of args -> #ERROR!
model._set("A3", "=CHISQ.INV(0.95)");
model._set("A4", "=CHISQ.INV(0.95, 4, 1)");
// Domain errors
// probability < 0 or > 1 -> #NUM!
model._set("A5", "=CHISQ.INV(-0.1, 4)");
model._set("A6", "=CHISQ.INV(1.1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.INV(0.5, 0)");
model.evaluate();
// Standard critical values:
// CHISQ.INV(0.95, 4) ≈ 9.487729037
// CHISQ.INV(0.1, 10) ≈ 4.865182052
assert_eq!(model._get_text("A1"), *"9.487729037");
assert_eq!(model._get_text("A2"), *"4.865182052");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_chisq_inv_rt_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.INV.RT(0.05, 4)");
model._set("A2", "=CHISQ.INV.RT(0.9, 10)");
// Wrong number of args -> #ERROR!
model._set("A3", "=CHISQ.INV.RT(0.05)");
model._set("A4", "=CHISQ.INV.RT(0.05, 4, 1)");
// Domain errors
// probability < 0 or > 1 -> #NUM!
model._set("A5", "=CHISQ.INV.RT(-0.1, 4)");
model._set("A6", "=CHISQ.INV.RT(1.1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.INV.RT(0.5, 0)");
model.evaluate();
// For chi-square:
// CHISQ.INV.RT(0.05, 4) = CHISQ.INV(0.95, 4) ≈ 9.487729037
// CHISQ.INV.RT(0.9, 10) = CHISQ.INV(0.1, 10) ≈ 4.865182052
assert_eq!(model._get_text("A1"), *"9.487729037");
assert_eq!(model._get_text("A2"), *"4.865182052");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,127 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "48");
model._set("A3", "32");
model._set("A4", "12");
model._set("A5", "1");
model._set("A6", "'13");
model._set("A7", "TRUE");
model._set("A8", "1");
model._set("A9", "13");
model._set("A10", "15");
model._set("B2", "55");
model._set("B3", "34");
model._set("B4", "13");
model._set("B5", "blah");
model._set("B6", "13");
model._set("B7", "1");
model._set("B8", "TRUE");
model._set("B9", "'14");
model._set("B10", "16");
model._set("C1", "=CHISQ.TEST(A2:A10, B2:B10)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.997129538");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("A2", "TRUE");
model._set("A3", "4");
model._set("A4", "'3");
model._set("B2", "2");
model._set("B3", "2");
model._set("B4", "2");
model._set("C1", "=CHISQ.TEST(A2:A4, B2:B4)");
model._set("G5", "=CHISQ.TEST({TRUE,4,\"3\"}, {2,2,2})");
// 1D arrays with different shapes
model._set("G6", "=CHISQ.TEST({1,2,3}, {3;3;4})");
// 2D array
model._set("G7", "=CHISQ.TEST({1,2;3,4},{2,3;2,2})");
// 1D arrays with same shape
model._set("G8", "=CHISQ.TEST({1,2,3,4}, {2,3,4,5})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.367879441");
assert_eq!(model._get_text("G5"), *"0.367879441");
assert_eq!(model._get_text("G6"), *"0.383531573");
assert_eq!(model._get_text("G7"), *"0.067889155");
assert_eq!(model._get_text("G8"), *"0.733094495");
}
#[test]
fn more_arrays() {
let mut model = new_empty_model();
model._set("V20", "2");
model._set("V21", "4");
model._set("W20", "3");
model._set("W21", "5");
model._set("C1", "=CHISQ.TEST({1,2;3,4},V20:W21)");
model._set("C2", "=CHISQ.TEST({1,2;3,4}, {2,3;4,5})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.257280177");
assert_eq!(model._get_text("C2"), *"0.257280177");
}
#[test]
fn array_ranges() {
let mut model = new_empty_model();
model._set("A2", "TRUE");
model._set("A3", "4");
model._set("A4", "'3");
model._set("B2", "2");
model._set("B3", "2");
model._set("B4", "2");
model._set("C1", "=CHISQ.TEST(A2:A4, {2;2;2})");
model._set("G5", "=CHISQ.TEST({TRUE;4;\"3\"}, B2:B4)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.367879441");
assert_eq!(model._get_text("G5"), *"0.367879441");
}
#[test]
fn array_2d_ranges() {
let mut model = new_empty_model();
model._set("A2", "2");
model._set("B2", "3");
model._set("C2", "4");
model._set("A3", "5");
model._set("B3", "6");
model._set("C3", "7");
model._set("G1", "=CHISQ.TEST({1,2,3;4,2,6}, A2:C3)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.129195493");
}
#[test]
fn ranges_1d() {
let mut model = new_empty_model();
model._set("A2", "1");
model._set("A3", "2");
model._set("A4", "3");
model._set("B2", "4");
model._set("C2", "5");
model._set("D2", "6");
model._set("G1", "=CHISQ.TEST(A2:A4, B2:D2)");
model._set("G2", "=CHISQ.TEST(B2:D2, A2:A4)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.062349477");
assert_eq!(model._get_text("G2"), *"0.000261259");
}

View File

@@ -0,0 +1,51 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_confidence_norm_smoke() {
let mut model = new_empty_model();
model._set("A1", "=CONFIDENCE.NORM(0.05, 2.5, 50)");
// Some edge/error cases
model._set("A2", "=CONFIDENCE.NORM(0, 2.5, 50)"); // alpha <= 0 -> #NUM!
model._set("A3", "=CONFIDENCE.NORM(1, 2.5, 50)"); // alpha >= 1 -> #NUM!
model._set("A4", "=CONFIDENCE.NORM(0.05, -1, 50)"); // std_dev <=0 -> #NUM!
model._set("A5", "=CONFIDENCE.NORM(0.05, 2.5, 1)");
model._set("A6", "=CONFIDENCE.NORM(0.05, 2.5, 0.99)"); // size < 1 -> #NUM!
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.692951912");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"4.899909961");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_confidence_t_smoke() {
let mut model = new_empty_model();
model._set("A1", "=CONFIDENCE.T(0.05, 50000, 100)");
// Some edge/error cases
model._set("A2", "=CONFIDENCE.T(0, 50000, 100)"); // alpha <= 0 -> #NUM!
model._set("A3", "=CONFIDENCE.T(1, 50000, 100)"); // alpha >= 1 -> #NUM!
model._set("A4", "=CONFIDENCE.T(0.05, -1, 100)");
model._set("A5", "=CONFIDENCE.T(0.05, 50000, 1)");
model._set("A6", "=CONFIDENCE.T(0.05, 50000, 1.7)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"9921.08475793");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#DIV/0!");
assert_eq!(model._get_text("A6"), *"#DIV/0!");
}

View File

@@ -0,0 +1,57 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_covariance_smoke() {
let mut model = new_empty_model();
model._set("A1", "3");
model._set("A2", "9");
model._set("A3", "2");
model._set("A4", "7");
model._set("A5", "4");
model._set("A6", "12");
model._set("B1", "5");
model._set("B2", "15");
model._set("B3", "6");
model._set("B4", "17");
model._set("B5", "8");
model._set("B6", "20");
model._set("C1", "=COVARIANCE.P(A1:A6, B1:B6)");
model._set("C2", "=COVARIANCE.S(A1:A6, B1:B6)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"19.194444444");
assert_eq!(model._get_text("C2"), *"23.033333333");
}
#[test]
fn arrays_mixed() {
let mut model = new_empty_model();
model._set("A2", "2");
model._set("A3", "4");
model._set("A4", "6");
model._set("A5", "8");
model._set("B2", "1");
model._set("B3", "3");
model._set("B4", "5");
model._set("B5", "7");
model._set("C1", "=COVARIANCE.P(A2:A5, {1,3,5,7})");
model._set("C2", "=COVARIANCE.S(A2:A5, {1,3,5,7})");
model._set("C3", "=COVARIANCE.P(A2:A5, B2:B5)");
model._set("C4", "=COVARIANCE.S(A2:A5, B2:B5)");
model._set("C5", "=COVARIANCE.P({2,4,6,8}, B2:B5)");
model._set("C6", "=COVARIANCE.S({2,4,6,8}, B2:B5)");
model._set("C7", "=COVARIANCE.P({2,4,6,8}, {1,3,5,7})");
model._set("C8", "=COVARIANCE.S({2,4,6,8}, {1,3,5,7})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"5");
assert_eq!(model._get_text("C2"), *"6.666666667");
}

View File

@@ -0,0 +1,50 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn arguments_smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ()");
model._set("A2", "=DEVSQ(1, 2, 3)");
model._set("A3", "=DEVSQ(1, )");
model._set("A4", "=DEVSQ(1, , 3)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"#ERROR!");
assert_eq!(model._get_text("A2"), *"2");
assert_eq!(model._get_text("A3"), *"0");
assert_eq!(model._get_text("A4"), *"2");
}
#[test]
fn ranges() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ(A2:A8)");
model._set("A2", "4");
model._set("A3", "5");
model._set("A4", "8");
model._set("A5", "7");
model._set("A6", "11");
model._set("A7", "4");
model._set("A8", "3");
model.evaluate();
assert_eq!(model._get_text("A1"), *"48");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ({1, 2, 3})");
model._set("A2", "=DEVSQ({1; 2; 3})");
model._set("A3", "=DEVSQ({1, 2; 3, 4})");
model._set("A4", "=DEVSQ({1, 2; 3, 4; 5, 6})");
model.evaluate();
assert_eq!(model._get_text("A1"), *"2");
assert_eq!(model._get_text("A2"), *"2");
assert_eq!(model._get_text("A3"), *"5");
assert_eq!(model._get_text("A4"), *"17.5");
}

View File

@@ -0,0 +1,32 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_expon_dist_smoke() {
let mut model = new_empty_model();
// λ = 1, x = 0.5
// CDF = 1 - e^-0.5 ≈ 0.393469340
// PDF = e^-0.5 ≈ 0.606530660
model._set("A1", "=EXPON.DIST(0.5, 1, TRUE)");
model._set("A2", "=EXPON.DIST(0.5, 1, FALSE)");
// Wrong number of args
model._set("A3", "=EXPON.DIST(0.5, 1)");
model._set("A4", "=EXPON.DIST(0.5, 1, TRUE, FALSE)");
// Domain errors
model._set("A5", "=EXPON.DIST(-1, 1, TRUE)"); // x < 0
model._set("A6", "=EXPON.DIST(0.5, 0, TRUE)"); // lambda <= 0
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.39346934");
assert_eq!(model._get_text("A2"), *"0.60653066");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,75 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_f_dist_sanity() {
let mut model = new_empty_model();
model._set("A1", "=F.DIST(15, 6, 4, TRUE)");
model._set("A2", "=F.DIST(15, 6, 4, FALSE)");
model._set("A3", "=F.DIST(15, 6, 4)");
model._set("A4", "=F.DIST(15, 6, 4, TRUE, FALSE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.989741952");
assert_eq!(model._get_text("A2"), *"0.001271447");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_f_dist_rt_sanity() {
let mut model = new_empty_model();
// Valid call
model._set("A1", "=F.DIST.RT(15, 6, 4)");
// Too few args
model._set("A2", "=F.DIST.RT(15, 6)");
// Too many args
model._set("A3", "=F.DIST.RT(15, 6, 4, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.010258048");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}
#[test]
fn test_fn_f_inv_sanity() {
let mut model = new_empty_model();
// Valid call: left-tail inverse
model._set("A1", "=F.INV(0.9897419523940, 6, 4)");
// Too many args
model._set("A2", "=F.INV(0.5, 6, 4, 2)");
// Too few args
model._set("A3", "=F.INV(0.5, 6)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"15");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}
#[test]
fn test_fn_f_inv_rt_sanity() {
let mut model = new_empty_model();
// Valid call: left-tail inverse
model._set("A1", "=F.INV.RT(0.0102580476059808, 6, 4)");
// Too many args
model._set("A2", "=F.INV.RT(0.5, 6, 4, 2)");
// Too few args
model._set("A3", "=F.INV.RT(0.5, 6)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"15");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}

View File

@@ -0,0 +1,53 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_fisher_smoke() {
let mut model = new_empty_model();
// Valid inputs
model._set("A1", "=FISHER(0.1)");
model._set("A2", "=FISHER(-0.5)");
model._set("A3", "=FISHER(0.8)");
// Domain errors: x <= -1 or x >= 1 -> #NUM!
model._set("A4", "=FISHER(1)");
model._set("A5", "=FISHER(-1)");
model._set("A6", "=FISHER(2)");
// Wrong number of arguments -> #ERROR!
model._set("A7", "=FISHER(0.1, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.100335348");
assert_eq!(model._get_text("A2"), *"-0.549306144");
assert_eq!(model._get_text("A3"), *"1.098612289");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#ERROR!");
}
#[test]
fn test_fn_fisher_inv_smoke() {
let mut model = new_empty_model();
// Valid inputs
model._set("A1", "=FISHERINV(-1.5)");
model._set("A2", "=FISHERINV(0.5)");
model._set("A3", "=FISHERINV(2)");
// Wrong number of arguments -> #ERROR!
model._set("A4", "=FISHERINV(0.5, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"-0.905148254");
assert_eq!(model._get_text("A2"), *"0.462117157");
assert_eq!(model._get_text("A3"), *"0.96402758");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}

View File

@@ -0,0 +1,42 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_hyp_geom_dist_smoke() {
let mut model = new_empty_model();
// Valid: PDF (non-cumulative)
model._set("A1", "=HYPGEOM.DIST(1, 4, 12, 20, FALSE)");
// Valid: CDF (cumulative)
model._set("A2", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=HYPGEOM.DIST(1, 4, 12, 20)");
model._set("A4", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE, FALSE)");
// Domain errors:
// sample_s > number_sample -> #NUM!
model._set("A5", "=HYPGEOM.DIST(5, 4, 12, 20, TRUE)");
// population_s > number_pop -> #NUM!
model._set("A6", "=HYPGEOM.DIST(1, 4, 25, 20, TRUE)");
// number_sample > number_pop -> #NUM!
model._set("A7", "=HYPGEOM.DIST(1, 25, 12, 20, TRUE)");
model.evaluate();
// PDF: P(X = 1)
assert_eq!(model._get_text("A1"), *"0.13869969");
// CDF: P(X <= 1)
assert_eq!(model._get_text("A2"), *"0.153147575");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,61 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_log_norm_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF
model._set("A1", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE)");
model._set("A2", "=LOGNORM.DIST(4, 3.5, 1.2, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=LOGNORM.DIST(4, 3.5, 1.2)");
model._set("A4", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE, FALSE)");
// Domain errors:
// x <= 0 -> #NUM!
model._set("A5", "=LOGNORM.DIST(0, 3.5, 1.2, TRUE)");
// std_dev <= 0 -> #NUM!
model._set("A6", "=LOGNORM.DIST(4, 3.5, 0, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.039083556");
assert_eq!(model._get_text("A2"), *"0.017617597");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_log_norm_inv_smoke() {
let mut model = new_empty_model();
// Valid call
model._set("A1", "=LOGNORM.INV(0.5, 3.5, 1.2)");
// Wrong number of arguments -> #ERROR!
model._set("A2", "=LOGNORM.INV(0.5, 3.5)");
model._set("A3", "=LOGNORM.INV(0.5, 3.5, 1.2, 0)");
// Domain errors:
// probability <= 0 or >= 1 -> #NUM!
model._set("A4", "=LOGNORM.INV(0, 3.5, 1.2)");
model._set("A5", "=LOGNORM.INV(1, 3.5, 1.2)");
// std_dev <= 0 -> #NUM!
model._set("A6", "=LOGNORM.INV(0.5, 3.5, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"33.115451959");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,119 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_norm_dist_smoke() {
let mut model = new_empty_model();
// Valid: standard normal as a special case
model._set("A1", "=NORM.DIST(1, 0, 1, TRUE)");
model._set("A2", "=NORM.DIST(1, 0, 1, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.DIST(1, 0, 1)");
model._set("A4", "=NORM.DIST(1, 0, 1, TRUE, FALSE)");
// Domain errors: standard_dev <= 0 -> #NUM!
model._set("A5", "=NORM.DIST(1, 0, 0, TRUE)");
model._set("A6", "=NORM.DIST(1, 0, -1, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.841344746");
assert_eq!(model._get_text("A2"), *"0.241970725");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_norm_inv_smoke() {
let mut model = new_empty_model();
// Valid: median of standard normal
model._set("A1", "=NORM.INV(0.5, 0, 1)");
// Wrong number of arguments -> #ERROR!
model._set("A2", "=NORM.INV(0.5, 0)");
model._set("A3", "=NORM.INV(0.5, 0, 1, 0)");
// Domain errors:
// probability <= 0 or >= 1 -> #NUM!
model._set("A4", "=NORM.INV(0, 0, 1)");
model._set("A5", "=NORM.INV(1, 0, 1)");
// standard_dev <= 0 -> #NUM!
model._set("A6", "=NORM.INV(0.5, 0, 0)");
model._set("A7", "=NORM.INV(0.7, 0.2, 1)");
model._set("A8", "=NORM.INV(0.7, 0.2, 5)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"0.724400513");
assert_eq!(model._get_text("A8"), *"2.822002564");
}
#[test]
fn test_fn_norm_s_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF at z = 0
model._set("A1", "=NORM.S.DIST(0, TRUE)");
model._set("A2", "=NORM.S.DIST(0, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.DIST(0)");
model._set("A4", "=NORM.S.DIST(0, TRUE, FALSE)");
model._set("A5", "=NORM.S.DIST(0.2, FALSE)");
model._set("A6", "=NORM.S.DIST(2.2, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.5");
assert_eq!(model._get_text("A2"), *"0.39894228");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"0.391042694");
assert_eq!(model._get_text("A6"), *"0.986096552");
}
#[test]
fn test_fn_norm_s_inv_smoke() {
let mut model = new_empty_model();
// Valid: symmetric points
model._set("A1", "=NORM.S.INV(0.5)");
model._set("A2", "=NORM.S.INV(0.841344746)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.INV()");
model._set("A4", "=NORM.S.INV(0.5, 0)");
// Domain errors: probability <= 0 or >= 1 -> #NUM!
model._set("A5", "=NORM.S.INV(0)");
model._set("A6", "=NORM.S.INV(1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
// Approximately 1
assert_eq!(model._get_text("A2"), *"1");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,31 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "48");
model._set("A3", "32");
model._set("A4", "12");
model._set("A5", "1");
model._set("A6", "'13");
model._set("A7", "TRUE");
model._set("A8", "1");
model._set("A9", "13");
model._set("A10", "15");
model._set("B2", "55");
model._set("B3", "34");
model._set("B4", "13");
model._set("B5", "blah");
model._set("B6", "13");
model._set("B7", "1");
model._set("B8", "TRUE");
model._set("B9", "'14");
model._set("B10", "16");
model._set("C1", "=PEARSON(A2:A10, B2:B10)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.998381439");
}

View File

@@ -0,0 +1,26 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_phi_smoke() {
let mut model = new_empty_model();
model._set("A1", "=PHI(0)");
model._set("A2", "=PHI(1)");
model._set("A3", "=PHI(-1)");
// Wrong number of arguments -> #ERROR!
model._set("A4", "=PHI()");
model._set("A5", "=PHI(0, 1)");
model.evaluate();
// Standard values
assert_eq!(model._get_text("A1"), *"0.39894228");
assert_eq!(model._get_text("A2"), *"0.241970725");
assert_eq!(model._get_text("A3"), *"0.241970725");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_poisson_dist_smoke() {
let mut model = new_empty_model();
// λ = 2, x = 3
// P(X = 3) ≈ 0.180447045
// P(X <= 3) ≈ 0.857123461
model._set("A1", "=POISSON.DIST(3, 2, FALSE)");
model._set("A2", "=POISSON.DIST(3, 2, TRUE)");
// Wrong arg count
model._set("A3", "=POISSON.DIST(3, 2)");
model._set("A4", "=POISSON.DIST(3, 2, TRUE, FALSE)");
// Domain errors
model._set("A5", "=POISSON.DIST(-1, 2, TRUE)"); // x < 0
model._set("A6", "=POISSON.DIST(3, -2, TRUE)"); // mean < 0
// λ = 0 special cases
model._set("A7", "=POISSON.DIST(0, 0, FALSE)"); // 1
model._set("A8", "=POISSON.DIST(1, 0, FALSE)"); // 0
model._set("A9", "=POISSON.DIST(5, 0, TRUE)"); // 1
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.180447044");
assert_eq!(model._get_text("A2"), *"0.85712346");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"1");
assert_eq!(model._get_text("A8"), *"0");
assert_eq!(model._get_text("A9"), *"1");
}

View File

@@ -0,0 +1,46 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=STDEV.P(A2:A15)");
model._set("B2", "=STDEV.S(A2:A15)");
model._set("B3", "=STDEVA(A2:A15)");
model._set("B4", "=STDEVPA(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"8.483071378");
assert_eq!(model._get_text("B2"), *"8.941942369");
assert_eq!(model._get_text("B3"), *"15.499955689");
assert_eq!(model._get_text("B4"), *"14.936131032");
}

View File

@@ -0,0 +1,160 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_t_dist_smoke() {
let mut model = new_empty_model();
// Valid: cumulative (left-tail CDF)
model._set("A1", "=T.DIST(2, 10, TRUE)");
// Valid: probability density function (PDF)
model._set("B1", "=T.DIST(2, 10, FALSE)");
// Wrong number of arguments
model._set("A2", "=T.DIST(2, 10)");
model._set("A3", "=T.DIST(2, 10, TRUE, FALSE)");
// Domain error: df < 1 -> #NUM!
model._set("A4", "=T.DIST(2, 0, TRUE)");
model._set("A5", "=T.DIST(2, -1, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.963305983");
assert_eq!(model._get_text("B1"), *"0.061145766");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
}
#[test]
fn test_fn_t_dist_rt_smoke() {
let mut model = new_empty_model();
// Valid: right tail probability
model._set("A1", "=T.DIST.RT(2, 10)");
// Wrong number of arguments
model._set("A2", "=T.DIST.RT(2)");
model._set("A3", "=T.DIST.RT(2, 10, TRUE)");
// Domain error: df < 1
model._set("A4", "=T.DIST.RT(2, 0)");
model._set("A5", "=T.DIST.RT(2, -1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.036694017");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
}
#[test]
fn test_fn_t_dist_2t_smoke() {
let mut model = new_empty_model();
// Valid: two-tailed probability
model._set("A1", "=T.DIST.2T(2, 10)");
// In the limit case of x = 0, the two-tailed probability is 1.0
model._set("A4", "=T.DIST.2T(0, 10)");
// Wrong number of arguments
model._set("A2", "=T.DIST.2T(2)");
model._set("A3", "=T.DIST.2T(2, 10, TRUE)");
// Domain errors:
// x < 0 -> #NUM!
model._set("A5", "=T.DIST.2T(-0.001, 10)");
// df < 1 -> #NUM!
model._set("A6", "=T.DIST.2T(2, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.073388035");
assert_eq!(model._get_text("A4"), *"1");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_t_inv_smoke() {
let mut model = new_empty_model();
// Valid: upper and lower tail
model._set("A1", "=T.INV(0.95, 10)");
model._set("A2", "=T.INV(0.05, 10)");
// limit case:
model._set("B2", "=T.INV(0.95, 1)");
// Wrong number of arguments
model._set("A3", "=T.INV(0.95)");
model._set("A4", "=T.INV(0.95, 10, 1)");
// Domain errors:
// p <= 0 or >= 1
model._set("A5", "=T.INV(0, 10)");
model._set("A6", "=T.INV(1, 10)");
// df < 1
model._set("A7", "=T.INV(0.95, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"1.812461123");
assert_eq!(model._get_text("A2"), *"-1.812461123");
assert_eq!(model._get_text("B2"), *"6.313751515");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_t_inv_2t_smoke() {
let mut model = new_empty_model();
// Valid: two-tailed critical values
model._set("A1", "=T.INV.2T(0.1, 10)");
model._set("A2", "=T.INV.2T(0.05, 10)");
// p = 1 should give t = 0 (both tails outside are 1.0, so cut at the mean)
model._set("A3", "=T.INV.2T(1, 10)");
model._set("A7", "=T.INV.2T(1.5, 10)");
// Wrong number of arguments
model._set("A4", "=T.INV.2T(0.1)");
model._set("A5", "=T.INV.2T(0.1, 10, 1)");
// Domain errors:
// p <= 0 or p > 1
model._set("A6", "=T.INV.2T(0, 10)");
// df < 1
model._set("A8", "=T.INV.2T(0.1, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"1.812461123");
assert_eq!(model._get_text("A2"), *"2.228138852");
assert_eq!(model._get_text("A3"), *"0");
// NB: Excel returns -0.699812061 for T.INV.2T(1.5, 10)
// which seems inconsistent with its documented behavior
assert_eq!(model._get_text("A7"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A8"), *"#NUM!");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_t_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "3");
model._set("A3", "4");
model._set("A4", "5");
model._set("A5", "6");
model._set("A6", "10");
model._set("A7", "3");
model._set("A8", "2");
model._set("A9", "4");
model._set("A10", "7");
model._set("B2", "6");
model._set("B3", "19");
model._set("B4", "3");
model._set("B5", "2");
model._set("B6", "13");
model._set("B7", "4");
model._set("B8", "5");
model._set("B9", "17");
model._set("B10", "3");
model._set("C1", "=T.TEST(A2:A10, B2:B10, 1, 1)");
model._set("C2", "=T.TEST(A2:A10, B2:B10, 1, 2)");
model._set("C3", "=T.TEST(A2:A10, B2:B10, 1, 3)");
model._set("C4", "=T.TEST(A2:A10, B2:B10, 2, 1)");
model._set("C5", "=T.TEST(A2:A10, B2:B10, 2, 2)");
model._set("C6", "=T.TEST(A2:A10, B2:B10, 2, 3)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.103836888");
assert_eq!(model._get_text("C2"), *"0.100244599");
assert_eq!(model._get_text("C3"), *"0.105360319");
assert_eq!(model._get_text("C4"), *"0.207673777");
assert_eq!(model._get_text("C5"), *"0.200489197");
assert_eq!(model._get_text("C6"), *"0.210720639");
}

View File

@@ -0,0 +1,46 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=VAR.P(A2:A15)");
model._set("B2", "=VAR.S(A2:A15)");
model._set("B3", "=VARA(A2:A15)");
model._set("B4", "=VARPA(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"71.9625");
assert_eq!(model._get_text("B2"), *"79.958333333");
assert_eq!(model._get_text("B3"), *"240.248626374");
assert_eq!(model._get_text("B4"), *"223.088010204");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_weibull_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF for x = 1, alpha = 2, beta = 1
model._set("A1", "=WEIBULL.DIST(1, 2, 1, TRUE)");
model._set("A2", "=WEIBULL.DIST(1, 2, 1, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=WEIBULL.DIST(1, 2, 1)");
model._set("A4", "=WEIBULL.DIST(1, 2, 1, TRUE, FALSE)");
// Domain errors:
// x < 0 -> #NUM!
model._set("A5", "=WEIBULL.DIST(-1, 2, 1, TRUE)");
// alpha <= 0 -> #NUM!
model._set("A6", "=WEIBULL.DIST(1, 0, 1, TRUE)");
model._set("A7", "=WEIBULL.DIST(1, -1, 1, TRUE)");
// beta <= 0 -> #NUM!
model._set("A8", "=WEIBULL.DIST(1, 2, 0, TRUE)");
model._set("A9", "=WEIBULL.DIST(1, 2, -1, TRUE)");
model.evaluate();
// 1 - e^-1
assert_eq!(model._get_text("A1"), *"0.632120559");
// 2 * e^-1
assert_eq!(model._get_text("A2"), *"0.735758882");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
assert_eq!(model._get_text("A8"), *"#NUM!");
assert_eq!(model._get_text("A9"), *"#NUM!");
}

View File

@@ -0,0 +1,36 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_z_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "3");
model._set("A3", "6");
model._set("A4", "7");
model._set("A5", "8");
model._set("A6", "6");
model._set("A7", "5");
model._set("A8", "4");
model._set("A9", "2");
model._set("A10", "1");
model._set("A11", "9");
model._set("G1", "=Z.TEST(A2:A11, 4)");
model._set("G2", "=Z.TEST(A2:A11, 6)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.090574197");
assert_eq!(model._get_text("G2"), *"0.863043389");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("D1", "=Z.TEST({5,2,3,4}, 4, 123)");
model._set("D2", "=Z.TEST({5,2,3,4}, 4)");
model.evaluate();
assert_eq!(model._get_text("D1"), *"0.503243397");
assert_eq!(model._get_text("D2"), *"0.780710987");
}

View File

@@ -11,8 +11,8 @@ fn arguments() {
model._set("A4", "=COMBINA()"); model._set("A4", "=COMBINA()");
model._set("A5", "=COMBIN(2)"); model._set("A5", "=COMBIN(2)");
model._set("A6", "=COMBINA(2)"); model._set("A6", "=COMBINA(2)");
model._set("A5", "=COMBIN(1, 2, 3)"); model._set("A7", "=COMBIN(1, 2, 3)");
model._set("A6", "=COMBINA(1, 2, 3)"); model._set("A8", "=COMBINA(1, 2, 3)");
model.evaluate(); model.evaluate();
@@ -24,4 +24,4 @@ fn arguments() {
assert_eq!(model._get_text("A6"), *"#ERROR!"); assert_eq!(model._get_text("A6"), *"#ERROR!");
assert_eq!(model._get_text("A7"), *"#ERROR!"); assert_eq!(model._get_text("A7"), *"#ERROR!");
assert_eq!(model._get_text("A8"), *"#ERROR!"); assert_eq!(model._get_text("A8"), *"#ERROR!");
} }

View File

@@ -7,8 +7,8 @@ fn datevalue_timevalue_arguments() {
let mut model = new_empty_model(); let mut model = new_empty_model();
model._set("A1", "=DATEVALUE()"); model._set("A1", "=DATEVALUE()");
model._set("A2", "=TIMEVALUE()"); model._set("A2", "=TIMEVALUE()");
model._set("A3", "=DATEVALUE("2000-01-01")") model._set("A3", "=DATEVALUE(\"2000-01-01\")");
model._set("A4", "=TIMEVALUE("12:00:00")") model._set("A4", "=TIMEVALUE(\"12:00:00\")");
model._set("A5", "=DATEVALUE(1,2)"); model._set("A5", "=DATEVALUE(1,2)");
model._set("A6", "=TIMEVALUE(1,2)"); model._set("A6", "=TIMEVALUE(1,2)");
model.evaluate(); model.evaluate();
@@ -20,5 +20,3 @@ fn datevalue_timevalue_arguments() {
assert_eq!(model._get_text("A5"), *"#ERROR!"); assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#ERROR!"); assert_eq!(model._get_text("A6"), *"#ERROR!");
} }

Binary file not shown.