diff --git a/docs/src/functions/images/arccosine-curve.png b/docs/src/functions/images/arccosine-curve.png new file mode 100644 index 0000000..3087cee Binary files /dev/null and b/docs/src/functions/images/arccosine-curve.png differ diff --git a/docs/src/functions/math_and_trigonometry/acos.md b/docs/src/functions/math_and_trigonometry/acos.md index 533bd4d..8ead00a 100644 --- a/docs/src/functions/math_and_trigonometry/acos.md +++ b/docs/src/functions/math_and_trigonometry/acos.md @@ -4,8 +4,35 @@ outline: deep lang: en-US --- -# ACOS +# ACOS function +## Overview +ACOS is a function of the Math and Trigonometry category that calculates the inverse cosine (arccosine) of a number in the range [-1 to 1], returning an angle in the range [0 to $\pi$], expressed in radians. +## Usage +### Syntax +**ACOS(number) => acos** +### Argument descriptions +* *number* ([number](/features/value-types#numbers), required). The number whose arccosine is to be calculated, in the range [-1 to 1]. +### Additional guidance +None. +### Returned value +ACOS returns a number in radians in the range [0 to $\pi$] that is the angle whose cosine is the specified number. +### Error conditions +* In common with many other IronCalc functions, ACOS propagates errors that are found in its argument. +* If no argument, or more than one argument, is supplied, then ACOS returns the [`#ERROR!`](/features/error-types.md#error) error. +* If the value of the *number* argument is not (or cannot be converted to) a [number](/features/value-types#numbers), then ACOS returns the [`#VALUE!`](/features/error-types.md#value) error. +* If the value of the *number* argument lies outside the range [-1 to 1], then ACOS returns the [`#NUM!`](/features/error-types.md#num) error. +* For some argument values, ACOS may return a [`#DIV/0!`](/features/error-types.md#div-0) error. + +## Details +* The ACOS function utilizes the *acos()* method provided by the [Rust Standard Library](https://doc.rust-lang.org/std/). +* The figure below illustrates the output of the ACOS function for angles $x$ in the range -1 to +1. +
