UPDATE: Dump of initial files
This commit is contained in:
29
base/src/functions/engineering/transcendental/README.md
Normal file
29
base/src/functions/engineering/transcendental/README.md
Normal file
@@ -0,0 +1,29 @@
|
||||
# Creating tests from transcendental functions
|
||||
|
||||
Excel supports a number of transcendental functions like the error functions, gamma nad beta functions.
|
||||
In this folder we have tests for the Bessel functions.
|
||||
Some other platform's implementations of those functions are remarkably poor (including Excel), sometimes failing on the third decimal digit. We strive to do better.
|
||||
|
||||
To properly test you need to compute some known values with established arbitrary precision arithmetic.
|
||||
|
||||
I use for this purpose Arb[1], created by the unrivalled Fredrik Johansson[2]. You might find some python bindings, but I use Julia's Nemo[3]:
|
||||
|
||||
```julia
|
||||
julia> using Nemo
|
||||
julia> CC = AcbField(200)
|
||||
julia> besseli(CC("17"), CC("5.6"))
|
||||
```
|
||||
|
||||
If you are new to Julia, just install Julia and in the Julia terminal run:
|
||||
|
||||
```
|
||||
julia> using Pkg; Pkg.add("Nemo")
|
||||
```
|
||||
|
||||
You only need to do that once (like the R philosophy)
|
||||
|
||||
Will give you any Bessel function of any order (integer or not) of any value real or complex
|
||||
|
||||
[1]: https://arblib.org/
|
||||
[2]: https://fredrikj.net/
|
||||
[3]: https://nemocas.github.io/Nemo.jl/latest/
|
||||
144
base/src/functions/engineering/transcendental/bessel_i.rs
Normal file
144
base/src/functions/engineering/transcendental/bessel_i.rs
Normal file
@@ -0,0 +1,144 @@
|
||||
// This are somewhat lower precision than the BesselJ and BesselY
|
||||
|
||||
// needed for BesselK
|
||||
pub(crate) fn bessel_i0(x: f64) -> f64 {
|
||||
// Parameters of the polynomial approximation
|
||||
let p1 = 1.0;
|
||||
let p2 = 3.5156229;
|
||||
let p3 = 3.0899424;
|
||||
let p4 = 1.2067492;
|
||||
let p5 = 0.2659732;
|
||||
let p6 = 3.60768e-2;
|
||||
let p7 = 4.5813e-3;
|
||||
|
||||
let q1 = 0.39894228;
|
||||
let q2 = 1.328592e-2;
|
||||
let q3 = 2.25319e-3;
|
||||
let q4 = -1.57565e-3;
|
||||
let q5 = 9.16281e-3;
|
||||
let q6 = -2.057706e-2;
|
||||
let q7 = 2.635537e-2;
|
||||
let q8 = -1.647633e-2;
|
||||
let q9 = 3.92377e-3;
|
||||
|
||||
let k1 = 3.75;
|
||||
let ax = x.abs();
|
||||
|
||||
if x.is_infinite() {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
if ax < k1 {
|
||||
// let xx = x / k1;
|
||||
// let y = xx * xx;
|
||||
// let mut result = 1.0;
|
||||
// let max_iter = 50;
|
||||
// let mut term = 1.0;
|
||||
// for i in 1..max_iter {
|
||||
// term = term * k1*k1*y /(2.0*i as f64).powi(2);
|
||||
// result += term;
|
||||
// };
|
||||
// result
|
||||
|
||||
let xx = x / k1;
|
||||
let y = xx * xx;
|
||||
p1 + y * (p2 + y * (p3 + y * (p4 + y * (p5 + y * (p6 + y * p7)))))
|
||||
} else {
|
||||
let y = k1 / ax;
|
||||
((ax).exp() / (ax).sqrt())
|
||||
* (q1
|
||||
+ y * (q2
|
||||
+ y * (q3 + y * (q4 + y * (q5 + y * (q6 + y * (q7 + y * (q8 + y * q9))))))))
|
||||
}
|
||||
}
|
||||
|
||||
// needed for BesselK
|
||||
pub(crate) fn bessel_i1(x: f64) -> f64 {
|
||||
let p1 = 0.5;
|
||||
let p2 = 0.87890594;
|
||||
let p3 = 0.51498869;
|
||||
let p4 = 0.15084934;
|
||||
let p5 = 2.658733e-2;
|
||||
let p6 = 3.01532e-3;
|
||||
let p7 = 3.2411e-4;
|
||||
|
||||
let q1 = 0.39894228;
|
||||
let q2 = -3.988024e-2;
|
||||
let q3 = -3.62018e-3;
|
||||
let q4 = 1.63801e-3;
|
||||
let q5 = -1.031555e-2;
|
||||
let q6 = 2.282967e-2;
|
||||
let q7 = -2.895312e-2;
|
||||
let q8 = 1.787654e-2;
|
||||
let q9 = -4.20059e-3;
|
||||
|
||||
let k1 = 3.75;
|
||||
let ax = x.abs();
|
||||
|
||||
if ax < k1 {
|
||||
let xx = x / k1;
|
||||
let y = xx * xx;
|
||||
x * (p1 + y * (p2 + y * (p3 + y * (p4 + y * (p5 + y * (p6 + y * p7))))))
|
||||
} else {
|
||||
let y = k1 / ax;
|
||||
let result = ((ax).exp() / (ax).sqrt())
|
||||
* (q1
|
||||
+ y * (q2
|
||||
+ y * (q3 + y * (q4 + y * (q5 + y * (q6 + y * (q7 + y * (q8 + y * q9))))))));
|
||||
if x < 0.0 {
|
||||
return -result;
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn bessel_i(n: i32, x: f64) -> f64 {
|
||||
let accuracy = 40;
|
||||
let large_number = 1e10;
|
||||
let small_number = 1e-10;
|
||||
|
||||
if n < 0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
|
||||
if n == 0 {
|
||||
return bessel_i0(x);
|
||||
}
|
||||
if x == 0.0 {
|
||||
// I_n(0) = 0 for all n!= 0
|
||||
return 0.0;
|
||||
}
|
||||
if n == 1 {
|
||||
return bessel_i1(x);
|
||||
}
|
||||
|
||||
if x.abs() > large_number {
|
||||
return 0.0;
|
||||
};
|
||||
|
||||
let tox = 2.0 / x.abs();
|
||||
let mut bip = 0.0;
|
||||
let mut bi = 1.0;
|
||||
let mut result = 0.0;
|
||||
let m = 2 * (((accuracy * n) as f64).sqrt().trunc() as i32 + n);
|
||||
|
||||
for j in (1..=m).rev() {
|
||||
(bip, bi) = (bi, bip + (j as f64) * tox * bi);
|
||||
// Prevent overflow
|
||||
if bi.abs() > large_number {
|
||||
result *= small_number;
|
||||
bi *= small_number;
|
||||
bip *= small_number;
|
||||
}
|
||||
if j == n {
|
||||
result = bip;
|
||||
}
|
||||
}
|
||||
|
||||
result *= bessel_i0(x) / bi;
|
||||
if (x < 0.0) && (n % 2 == 1) {
|
||||
result = -result;
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
402
base/src/functions/engineering/transcendental/bessel_j0_y0.rs
Normal file
402
base/src/functions/engineering/transcendental/bessel_j0_y0.rs
Normal file
@@ -0,0 +1,402 @@
|
||||
/* @(#)e_j0.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* j0(x), y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
|
||||
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse 1.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
* where
|
||||
* U(z) = u00 + u01*z + ... + u06*z^6
|
||||
* V(z) = 1 + v01*z + ... + v04*z^4
|
||||
* with absolute approximation error bounded by 2**-72.
|
||||
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method menti1d above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
use std::f64::consts::FRAC_2_PI;
|
||||
|
||||
use super::bessel_util::{high_word, split_words, FRAC_2_SQRT_PI, HUGE};
|
||||
|
||||
// R0/S0 on [0, 2.00]
|
||||
const R02: f64 = 1.562_499_999_999_999_5e-2; // 0x3F8FFFFF, 0xFFFFFFFD
|
||||
const R03: f64 = -1.899_792_942_388_547_2e-4; // 0xBF28E6A5, 0xB61AC6E9
|
||||
const R04: f64 = 1.829_540_495_327_006_7e-6; // 0x3EBEB1D1, 0x0C503919
|
||||
const R05: f64 = -4.618_326_885_321_032e-9; // 0xBE33D5E7, 0x73D63FCE
|
||||
const S01: f64 = 1.561_910_294_648_900_1e-2; // 0x3F8FFCE8, 0x82C8C2A4
|
||||
const S02: f64 = 1.169_267_846_633_374_5e-4; // 0x3F1EA6D2, 0xDD57DBF4
|
||||
const S03: f64 = 5.135_465_502_073_181e-7; // 0x3EA13B54, 0xCE84D5A9
|
||||
const S04: f64 = 1.166_140_033_337_9e-9; // 0x3E1408BC, 0xF4745D8F
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
const P_R8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-7.031_249_999_999_004e-2, /* 0xBFB1FFFF, 0xFFFFFD32 */
|
||||
-8.081_670_412_753_498, /* 0xC02029D0, 0xB44FA779 */
|
||||
-2.570_631_056_797_048_5e2, /* 0xC0701102, 0x7B19E863 */
|
||||
-2.485_216_410_094_288e3, /* 0xC0A36A6E, 0xCD4DCAFC */
|
||||
-5.253_043_804_907_295e3, /* 0xC0B4850B, 0x36CC643D */
|
||||
];
|
||||
const P_S8: [f64; 5] = [
|
||||
1.165_343_646_196_681_8e2, /* 0x405D2233, 0x07A96751 */
|
||||
3.833_744_753_641_218_3e3, /* 0x40ADF37D, 0x50596938 */
|
||||
4.059_785_726_484_725_5e4, /* 0x40E3D2BB, 0x6EB6B05F */
|
||||
1.167_529_725_643_759_2e5, /* 0x40FC810F, 0x8F9FA9BD */
|
||||
4.762_772_841_467_309_6e4, /* 0x40E74177, 0x4F2C49DC */
|
||||
];
|
||||
|
||||
const P_R5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.141_254_646_918_945e-11, /* 0xBDA918B1, 0x47E495CC */
|
||||
-7.031_249_408_735_993e-2, /* 0xBFB1FFFF, 0xE69AFBC6 */
|
||||
-4.159_610_644_705_878, /* 0xC010A370, 0xF90C6BBF */
|
||||
-6.767_476_522_651_673e1, /* 0xC050EB2F, 0x5A7D1783 */
|
||||
-3.312_312_996_491_729_7e2, /* 0xC074B3B3, 0x6742CC63 */
|
||||
-3.464_333_883_656_049e2, /* 0xC075A6EF, 0x28A38BD7 */
|
||||
];
|
||||
const P_S5: [f64; 5] = [
|
||||
6.075_393_826_923_003_4e1, /* 0x404E6081, 0x0C98C5DE */
|
||||
1.051_252_305_957_045_8e3, /* 0x40906D02, 0x5C7E2864 */
|
||||
5.978_970_943_338_558e3, /* 0x40B75AF8, 0x8FBE1D60 */
|
||||
9.625_445_143_577_745e3, /* 0x40C2CCB8, 0xFA76FA38 */
|
||||
2.406_058_159_229_391e3, /* 0x40A2CC1D, 0xC70BE864 */
|
||||
];
|
||||
|
||||
const P_R3: [f64; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.547_046_017_719_519e-9, /* 0xBE25E103, 0x6FE1AA86 */
|
||||
-7.031_196_163_814_817e-2, /* 0xBFB1FFF6, 0xF7C0E24B */
|
||||
-2.409_032_215_495_296, /* 0xC00345B2, 0xAEA48074 */
|
||||
-2.196_597_747_348_831e1, /* 0xC035F74A, 0x4CB94E14 */
|
||||
-5.807_917_047_017_376e1, /* 0xC04D0A22, 0x420A1A45 */
|
||||
-3.144_794_705_948_885e1, /* 0xC03F72AC, 0xA892D80F */
|
||||
];
|
||||
const P_S3: [f64; 5] = [
|
||||
3.585_603_380_552_097e1, /* 0x4041ED92, 0x84077DD3 */
|
||||
3.615_139_830_503_038_6e2, /* 0x40769839, 0x464A7C0E */
|
||||
1.193_607_837_921_115_3e3, /* 0x4092A66E, 0x6D1061D6 */
|
||||
1.127_996_798_569_074_1e3, /* 0x40919FFC, 0xB8C39B7E */
|
||||
1.735_809_308_133_357_5e2, /* 0x4065B296, 0xFC379081 */
|
||||
];
|
||||
|
||||
const P_R2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.875_343_330_325_264e-8, /* 0xBE77D316, 0xE927026D */
|
||||
-7.030_309_954_836_247e-2, /* 0xBFB1FF62, 0x495E1E42 */
|
||||
-1.450_738_467_809_529_9, /* 0xBFF73639, 0x8A24A843 */
|
||||
-7.635_696_138_235_278, /* 0xC01E8AF3, 0xEDAFA7F3 */
|
||||
-1.119_316_688_603_567_5e1, /* 0xC02662E6, 0xC5246303 */
|
||||
-3.233_645_793_513_353_4, /* 0xC009DE81, 0xAF8FE70F */
|
||||
];
|
||||
const P_S2: [f64; 5] = [
|
||||
2.222_029_975_320_888e1, /* 0x40363865, 0x908B5959 */
|
||||
1.362_067_942_182_152e2, /* 0x4061069E, 0x0EE8878F */
|
||||
2.704_702_786_580_835e2, /* 0x4070E786, 0x42EA079B */
|
||||
1.538_753_942_083_203_3e2, /* 0x40633C03, 0x3AB6FAFF */
|
||||
1.465_761_769_482_562e1, /* 0x402D50B3, 0x44391809 */
|
||||
];
|
||||
|
||||
// Note: This function is only called for ix>=0x40000000 (see above)
|
||||
fn pzero(x: f64) -> f64 {
|
||||
let ix = high_word(x) & 0x7fffffff;
|
||||
// ix>=0x40000000 && ix<=0x48000000);
|
||||
let (p, q) = if ix >= 0x40200000 {
|
||||
(P_R8, P_S8)
|
||||
} else if ix >= 0x40122E8B {
|
||||
(P_R5, P_S5)
|
||||
} else if ix >= 0x4006DB6D {
|
||||
(P_R3, P_S3)
|
||||
} else {
|
||||
(P_R2, P_S2)
|
||||
};
|
||||
let z = 1.0 / (x * x);
|
||||
let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
1.0 + r / s
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
const Q_R8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
7.324_218_749_999_35e-2, /* 0x3FB2BFFF, 0xFFFFFE2C */
|
||||
1.176_820_646_822_527e1, /* 0x40278952, 0x5BB334D6 */
|
||||
5.576_733_802_564_019e2, /* 0x40816D63, 0x15301825 */
|
||||
8.859_197_207_564_686e3, /* 0x40C14D99, 0x3E18F46D */
|
||||
3.701_462_677_768_878e4, /* 0x40E212D4, 0x0E901566 */
|
||||
];
|
||||
const Q_S8: [f64; 6] = [
|
||||
1.637_760_268_956_898_2e2, /* 0x406478D5, 0x365B39BC */
|
||||
8.098_344_946_564_498e3, /* 0x40BFA258, 0x4E6B0563 */
|
||||
1.425_382_914_191_204_8e5, /* 0x41016652, 0x54D38C3F */
|
||||
8.033_092_571_195_144e5, /* 0x412883DA, 0x83A52B43 */
|
||||
8.405_015_798_190_605e5, /* 0x4129A66B, 0x28DE0B3D */
|
||||
-3.438_992_935_378_666e5, /* 0xC114FD6D, 0x2C9530C5 */
|
||||
];
|
||||
|
||||
const Q_R5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.840_859_635_945_155_3e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
|
||||
7.324_217_666_126_848e-2, /* 0x3FB2BFFF, 0xD172B04C */
|
||||
5.835_635_089_620_569_5, /* 0x401757B0, 0xB9953DD3 */
|
||||
1.351_115_772_864_498_3e2, /* 0x4060E392, 0x0A8788E9 */
|
||||
1.027_243_765_961_641e3, /* 0x40900CF9, 0x9DC8C481 */
|
||||
1.989_977_858_646_053_8e3, /* 0x409F17E9, 0x53C6E3A6 */
|
||||
];
|
||||
const Q_S5: [f64; 6] = [
|
||||
8.277_661_022_365_378e1, /* 0x4054B1B3, 0xFB5E1543 */
|
||||
2.077_814_164_213_93e3, /* 0x40A03BA0, 0xDA21C0CE */
|
||||
1.884_728_877_857_181e4, /* 0x40D267D2, 0x7B591E6D */
|
||||
5.675_111_228_949_473e4, /* 0x40EBB5E3, 0x97E02372 */
|
||||
3.597_675_384_251_145e4, /* 0x40E19118, 0x1F7A54A0 */
|
||||
-5.354_342_756_019_448e3, /* 0xC0B4EA57, 0xBEDBC609 */
|
||||
];
|
||||
|
||||
const Q_R3: [f64; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.377_410_140_897_386e-9, /* 0x3E32CD03, 0x6ADECB82 */
|
||||
7.324_111_800_429_114e-2, /* 0x3FB2BFEE, 0x0E8D0842 */
|
||||
3.344_231_375_161_707, /* 0x400AC0FC, 0x61149CF5 */
|
||||
4.262_184_407_454_126_5e1, /* 0x40454F98, 0x962DAEDD */
|
||||
1.708_080_913_405_656e2, /* 0x406559DB, 0xE25EFD1F */
|
||||
1.667_339_486_966_511_7e2, /* 0x4064D77C, 0x81FA21E0 */
|
||||
];
|
||||
const Q_S3: [f64; 6] = [
|
||||
4.875_887_297_245_872e1, /* 0x40486122, 0xBFE343A6 */
|
||||
7.096_892_210_566_06e2, /* 0x40862D83, 0x86544EB3 */
|
||||
3.704_148_226_201_113_6e3, /* 0x40ACF04B, 0xE44DFC63 */
|
||||
6.460_425_167_525_689e3, /* 0x40B93C6C, 0xD7C76A28 */
|
||||
2.516_333_689_203_689_6e3, /* 0x40A3A8AA, 0xD94FB1C0 */
|
||||
-1.492_474_518_361_564e2, /* 0xC062A7EB, 0x201CF40F */
|
||||
];
|
||||
|
||||
const Q_R2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.504_444_448_869_832_7e-7, /* 0x3E84313B, 0x54F76BDB */
|
||||
7.322_342_659_630_793e-2, /* 0x3FB2BEC5, 0x3E883E34 */
|
||||
1.998_191_740_938_16, /* 0x3FFFF897, 0xE727779C */
|
||||
1.449_560_293_478_857_4e1, /* 0x402CFDBF, 0xAAF96FE5 */
|
||||
3.166_623_175_047_815_4e1, /* 0x403FAA8E, 0x29FBDC4A */
|
||||
1.625_270_757_109_292_7e1, /* 0x403040B1, 0x71814BB4 */
|
||||
];
|
||||
const Q_S2: [f64; 6] = [
|
||||
3.036_558_483_552_192e1, /* 0x403E5D96, 0xF7C07AED */
|
||||
2.693_481_186_080_498_4e2, /* 0x4070D591, 0xE4D14B40 */
|
||||
8.447_837_575_953_201e2, /* 0x408A6645, 0x22B3BF22 */
|
||||
8.829_358_451_124_886e2, /* 0x408B977C, 0x9C5CC214 */
|
||||
2.126_663_885_117_988_3e2, /* 0x406A9553, 0x0E001365 */
|
||||
-5.310_954_938_826_669_5, /* 0xC0153E6A, 0xF8B32931 */
|
||||
];
|
||||
|
||||
fn qzero(x: f64) -> f64 {
|
||||
let ix = high_word(x) & 0x7fffffff;
|
||||
let (p, q) = if ix >= 0x40200000 {
|
||||
(Q_R8, Q_S8)
|
||||
} else if ix >= 0x40122E8B {
|
||||
(Q_R5, Q_S5)
|
||||
} else if ix >= 0x4006DB6D {
|
||||
(Q_R3, Q_S3)
|
||||
} else {
|
||||
(Q_R2, Q_S2)
|
||||
};
|
||||
let z = 1.0 / (x * x);
|
||||
let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
(-0.125 + r / s) / x
|
||||
}
|
||||
|
||||
const U00: f64 = -7.380_429_510_868_723e-2; /* 0xBFB2E4D6, 0x99CBD01F */
|
||||
const U01: f64 = 1.766_664_525_091_811_2e-1; /* 0x3FC69D01, 0x9DE9E3FC */
|
||||
const U02: f64 = -1.381_856_719_455_969e-2; /* 0xBF8C4CE8, 0xB16CFA97 */
|
||||
const U03: f64 = 3.474_534_320_936_836_5e-4; /* 0x3F36C54D, 0x20B29B6B */
|
||||
const U04: f64 = -3.814_070_537_243_641_6e-6; /* 0xBECFFEA7, 0x73D25CAD */
|
||||
const U05: f64 = 1.955_901_370_350_229_2e-8; /* 0x3E550057, 0x3B4EABD4 */
|
||||
const U06: f64 = -3.982_051_941_321_034e-11; /* 0xBDC5E43D, 0x693FB3C8 */
|
||||
const V01: f64 = 1.273_048_348_341_237e-2; /* 0x3F8A1270, 0x91C9C71A */
|
||||
const V02: f64 = 7.600_686_273_503_533e-5; /* 0x3F13ECBB, 0xF578C6C1 */
|
||||
const V03: f64 = 2.591_508_518_404_578e-7; /* 0x3E91642D, 0x7FF202FD */
|
||||
const V04: f64 = 4.411_103_113_326_754_7e-10; /* 0x3DFE5018, 0x3BD6D9EF */
|
||||
|
||||
pub(crate) fn y0(x: f64) -> f64 {
|
||||
let (lx, hx) = split_words(x);
|
||||
let ix = 0x7fffffff & hx;
|
||||
|
||||
// Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / (x + x * x);
|
||||
}
|
||||
if (ix | lx) == 0 {
|
||||
return f64::NEG_INFINITY;
|
||||
}
|
||||
if hx < 0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
|
||||
if ix >= 0x40000000 {
|
||||
// |x| >= 2.0
|
||||
// y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
// where x0 = x-pi/4
|
||||
// Better formula:
|
||||
// cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
// = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
// sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
// = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
// To avoid cancellation, use
|
||||
// sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
// to compute the worse 1.
|
||||
|
||||
let s = x.sin();
|
||||
let c = x.cos();
|
||||
let mut ss = s - c;
|
||||
let mut cc = s + c;
|
||||
|
||||
// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
|
||||
if ix < 0x7fe00000 {
|
||||
// make sure x+x not overflow
|
||||
let z = -(x + x).cos();
|
||||
if (s * c) < 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
}
|
||||
return if ix > 0x48000000 {
|
||||
FRAC_2_SQRT_PI * ss / x.sqrt()
|
||||
} else {
|
||||
let u = pzero(x);
|
||||
let v = qzero(x);
|
||||
FRAC_2_SQRT_PI * (u * ss + v * cc) / x.sqrt()
|
||||
};
|
||||
}
|
||||
|
||||
if ix <= 0x3e400000 {
|
||||
// x < 2^(-27)
|
||||
return U00 + FRAC_2_PI * x.ln();
|
||||
}
|
||||
let z = x * x;
|
||||
let u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
|
||||
let v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
|
||||
u / v + FRAC_2_PI * (j0(x) * x.ln())
|
||||
}
|
||||
|
||||
pub(crate) fn j0(x: f64) -> f64 {
|
||||
let hx = high_word(x);
|
||||
let ix = hx & 0x7fffffff;
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
} else if x.is_infinite() {
|
||||
return 0.0;
|
||||
}
|
||||
// the function is even
|
||||
let x = x.abs();
|
||||
if ix >= 0x40000000 {
|
||||
// |x| >= 2.0
|
||||
// let (s, c) = x.sin_cos()
|
||||
let s = x.sin();
|
||||
let c = x.cos();
|
||||
let mut ss = s - c;
|
||||
let mut cc = s + c;
|
||||
// makes sure that x+x does not overflow
|
||||
if ix < 0x7fe00000 {
|
||||
// |x| < f64::MAX / 2.0
|
||||
let z = -(x + x).cos();
|
||||
if s * c < 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
}
|
||||
|
||||
// j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
// y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
return if ix > 0x48000000 {
|
||||
// x < 5.253807105661922e-287 (2^(-951))
|
||||
FRAC_2_SQRT_PI * cc / (x.sqrt())
|
||||
} else {
|
||||
let u = pzero(x);
|
||||
let v = qzero(x);
|
||||
FRAC_2_SQRT_PI * (u * cc - v * ss) / x.sqrt()
|
||||
};
|
||||
};
|
||||
if ix < 0x3f200000 {
|
||||
// |x| < 2^(-13)
|
||||
if HUGE + x > 1.0 {
|
||||
// raise inexact if x != 0
|
||||
if ix < 0x3e400000 {
|
||||
return 1.0; // |x|<2^(-27)
|
||||
} else {
|
||||
return 1.0 - 0.25 * x * x;
|
||||
}
|
||||
}
|
||||
}
|
||||
let z = x * x;
|
||||
let r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
|
||||
let s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
|
||||
if ix < 0x3FF00000 {
|
||||
// |x| < 1.00
|
||||
1.0 + z * (-0.25 + (r / s))
|
||||
} else {
|
||||
let u = 0.5 * x;
|
||||
(1.0 + u) * (1.0 - u) + z * (r / s)
|
||||
}
|
||||
}
|
||||
391
base/src/functions/engineering/transcendental/bessel_j1_y1.rs
Normal file
391
base/src/functions/engineering/transcendental/bessel_j1_y1.rs
Normal file
@@ -0,0 +1,391 @@
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __ieee754_j1(x), __ieee754_y1(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j1(x):
|
||||
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||
* for x in (0,2)
|
||||
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||
* for x in (2,inf)
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* as follow:
|
||||
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (sin(x) + cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j1(nan)= nan
|
||||
* j1(0) = 0
|
||||
* j1(inf) = 0
|
||||
*
|
||||
* Method -- y1(x):
|
||||
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||
* 2. For x<2.
|
||||
* Since
|
||||
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||
* We use the following function to approximate y1,
|
||||
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||
* where for x in [0,2] (abs err less than 2**-65.89)
|
||||
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||
* Note: For tiny x, 1/x dominate y1 and hence
|
||||
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
||||
* 3. For x>=2.
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* by method mentioned above.
|
||||
*/
|
||||
|
||||
use std::f64::consts::FRAC_2_PI;
|
||||
|
||||
use super::bessel_util::{high_word, split_words, FRAC_2_SQRT_PI, HUGE};
|
||||
|
||||
// R0/S0 on [0,2]
|
||||
const R00: f64 = -6.25e-2; // 0xBFB00000, 0x00000000
|
||||
const R01: f64 = 1.407_056_669_551_897e-3; // 0x3F570D9F, 0x98472C61
|
||||
const R02: f64 = -1.599_556_310_840_356e-5; // 0xBEF0C5C6, 0xBA169668
|
||||
const R03: f64 = 4.967_279_996_095_844_5e-8; // 0x3E6AAAFA, 0x46CA0BD9
|
||||
const S01: f64 = 1.915_375_995_383_634_6e-2; // 0x3F939D0B, 0x12637E53
|
||||
const S02: f64 = 1.859_467_855_886_309_2e-4; // 0x3F285F56, 0xB9CDF664
|
||||
const S03: f64 = 1.177_184_640_426_236_8e-6; // 0x3EB3BFF8, 0x333F8498
|
||||
const S04: f64 = 5.046_362_570_762_170_4e-9; // 0x3E35AC88, 0xC97DFF2C
|
||||
const S05: f64 = 1.235_422_744_261_379_1e-11; // 0x3DAB2ACF, 0xCFB97ED8
|
||||
|
||||
pub(crate) fn j1(x: f64) -> f64 {
|
||||
let hx = high_word(x);
|
||||
let ix = hx & 0x7fffffff;
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / x;
|
||||
}
|
||||
let y = x.abs();
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2.0 */
|
||||
let s = y.sin();
|
||||
let c = y.cos();
|
||||
let mut ss = -s - c;
|
||||
let mut cc = s - c;
|
||||
if ix < 0x7fe00000 {
|
||||
/* make sure y+y not overflow */
|
||||
let z = (y + y).cos();
|
||||
if s * c > 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
}
|
||||
|
||||
// j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
// y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
|
||||
let z = if ix > 0x48000000 {
|
||||
FRAC_2_SQRT_PI * cc / y.sqrt()
|
||||
} else {
|
||||
let u = pone(y);
|
||||
let v = qone(y);
|
||||
FRAC_2_SQRT_PI * (u * cc - v * ss) / y.sqrt()
|
||||
};
|
||||
if hx < 0 {
|
||||
return -z;
|
||||
} else {
|
||||
return z;
|
||||
}
|
||||
}
|
||||
if ix < 0x3e400000 {
|
||||
/* |x|<2**-27 */
|
||||
if HUGE + x > 1.0 {
|
||||
return 0.5 * x; /* inexact if x!=0 necessary */
|
||||
}
|
||||
}
|
||||
let z = x * x;
|
||||
let mut r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
|
||||
let s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
|
||||
r *= x;
|
||||
x * 0.5 + r / s
|
||||
}
|
||||
|
||||
const U0: [f64; 5] = [
|
||||
-1.960_570_906_462_389_4e-1, /* 0xBFC91866, 0x143CBC8A */
|
||||
5.044_387_166_398_113e-2, /* 0x3FA9D3C7, 0x76292CD1 */
|
||||
-1.912_568_958_757_635_5e-3, /* 0xBF5F55E5, 0x4844F50F */
|
||||
2.352_526_005_616_105e-5, /* 0x3EF8AB03, 0x8FA6B88E */
|
||||
-9.190_991_580_398_789e-8, /* 0xBE78AC00, 0x569105B8 */
|
||||
];
|
||||
const V0: [f64; 5] = [
|
||||
1.991_673_182_366_499e-2, /* 0x3F94650D, 0x3F4DA9F0 */
|
||||
2.025_525_810_251_351_7e-4, /* 0x3F2A8C89, 0x6C257764 */
|
||||
1.356_088_010_975_162_3e-6, /* 0x3EB6C05A, 0x894E8CA6 */
|
||||
6.227_414_523_646_215e-9, /* 0x3E3ABF1D, 0x5BA69A86 */
|
||||
1.665_592_462_079_920_8e-11, /* 0x3DB25039, 0xDACA772A */
|
||||
];
|
||||
|
||||
pub(crate) fn y1(x: f64) -> f64 {
|
||||
let (lx, hx) = split_words(x);
|
||||
let ix = 0x7fffffff & hx;
|
||||
// if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / (x + x * x);
|
||||
}
|
||||
if (ix | lx) == 0 {
|
||||
return f64::NEG_INFINITY;
|
||||
}
|
||||
if hx < 0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
if ix >= 0x40000000 {
|
||||
// |x| >= 2.0
|
||||
let s = x.sin();
|
||||
let c = x.cos();
|
||||
let mut ss = -s - c;
|
||||
let mut cc = s - c;
|
||||
if ix < 0x7fe00000 {
|
||||
// make sure x+x not overflow
|
||||
let z = (x + x).cos();
|
||||
if s * c > 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
}
|
||||
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||
* where x0 = x-3pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (cos(x) + sin(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
return if ix > 0x48000000 {
|
||||
FRAC_2_SQRT_PI * ss / x.sqrt()
|
||||
} else {
|
||||
let u = pone(x);
|
||||
let v = qone(x);
|
||||
FRAC_2_SQRT_PI * (u * ss + v * cc) / x.sqrt()
|
||||
};
|
||||
}
|
||||
if ix <= 0x3c900000 {
|
||||
// x < 2^(-54)
|
||||
return -FRAC_2_PI / x;
|
||||
}
|
||||
let z = x * x;
|
||||
let u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
|
||||
let v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
|
||||
x * (u / v) + FRAC_2_PI * (j1(x) * x.ln() - 1.0 / x)
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
const PR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
1.171_874_999_999_886_5e-1, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
||||
1.323_948_065_930_735_8e1, /* 0x402A7A9D, 0x357F7FCE */
|
||||
4.120_518_543_073_785_6e2, /* 0x4079C0D4, 0x652EA590 */
|
||||
3.874_745_389_139_605_3e3, /* 0x40AE457D, 0xA3A532CC */
|
||||
7.914_479_540_318_917e3, /* 0x40BEEA7A, 0xC32782DD */
|
||||
];
|
||||
|
||||
const PS8: [f64; 5] = [
|
||||
1.142_073_703_756_784_1e2, /* 0x405C8D45, 0x8E656CAC */
|
||||
3.650_930_834_208_534_6e3, /* 0x40AC85DC, 0x964D274F */
|
||||
3.695_620_602_690_334_6e4, /* 0x40E20B86, 0x97C5BB7F */
|
||||
9.760_279_359_349_508e4, /* 0x40F7D42C, 0xB28F17BB */
|
||||
3.080_427_206_278_888e4, /* 0x40DE1511, 0x697A0B2D */
|
||||
];
|
||||
|
||||
const PR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.319_905_195_562_435_2e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
||||
1.171_874_931_906_141e-1, /* 0x3FBDFFFF, 0xE2C10043 */
|
||||
6.802_751_278_684_329, /* 0x401B3604, 0x6E6315E3 */
|
||||
1.083_081_829_901_891_1e2, /* 0x405B13B9, 0x452602ED */
|
||||
5.176_361_395_331_998e2, /* 0x40802D16, 0xD052D649 */
|
||||
5.287_152_013_633_375e2, /* 0x408085B8, 0xBB7E0CB7 */
|
||||
];
|
||||
const PS5: [f64; 5] = [
|
||||
5.928_059_872_211_313e1, /* 0x404DA3EA, 0xA8AF633D */
|
||||
9.914_014_187_336_144e2, /* 0x408EFB36, 0x1B066701 */
|
||||
5.353_266_952_914_88e3, /* 0x40B4E944, 0x5706B6FB */
|
||||
7.844_690_317_495_512e3, /* 0x40BEA4B0, 0xB8A5BB15 */
|
||||
1.504_046_888_103_610_6e3, /* 0x40978030, 0x036F5E51 */
|
||||
];
|
||||
|
||||
const PR3: [f64; 6] = [
|
||||
3.025_039_161_373_736e-9, /* 0x3E29FC21, 0xA7AD9EDD */
|
||||
1.171_868_655_672_535_9e-1, /* 0x3FBDFFF5, 0x5B21D17B */
|
||||
3.932_977_500_333_156_4, /* 0x400F76BC, 0xE85EAD8A */
|
||||
3.511_940_355_916_369e1, /* 0x40418F48, 0x9DA6D129 */
|
||||
9.105_501_107_507_813e1, /* 0x4056C385, 0x4D2C1837 */
|
||||
4.855_906_851_973_649e1, /* 0x4048478F, 0x8EA83EE5 */
|
||||
];
|
||||
const PS3: [f64; 5] = [
|
||||
3.479_130_950_012_515e1, /* 0x40416549, 0xA134069C */
|
||||
3.367_624_587_478_257_5e2, /* 0x40750C33, 0x07F1A75F */
|
||||
1.046_871_399_757_751_3e3, /* 0x40905B7C, 0x5037D523 */
|
||||
8.908_113_463_982_564e2, /* 0x408BD67D, 0xA32E31E9 */
|
||||
1.037_879_324_396_392_8e2, /* 0x4059F26D, 0x7C2EED53 */
|
||||
];
|
||||
|
||||
const PR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.077_108_301_068_737_4e-7, /* 0x3E7CE9D4, 0xF65544F4 */
|
||||
1.171_762_194_626_833_5e-1, /* 0x3FBDFF42, 0xBE760D83 */
|
||||
2.368_514_966_676_088, /* 0x4002F2B7, 0xF98FAEC0 */
|
||||
1.224_261_091_482_612_3e1, /* 0x40287C37, 0x7F71A964 */
|
||||
1.769_397_112_716_877_3e1, /* 0x4031B1A8, 0x177F8EE2 */
|
||||
5.073_523_125_888_185, /* 0x40144B49, 0xA574C1FE */
|
||||
];
|
||||
const PS2: [f64; 5] = [
|
||||
2.143_648_593_638_214e1, /* 0x40356FBD, 0x8AD5ECDC */
|
||||
1.252_902_271_684_027_5e2, /* 0x405F5293, 0x14F92CD5 */
|
||||
2.322_764_690_571_628e2, /* 0x406D08D8, 0xD5A2DBD9 */
|
||||
1.176_793_732_871_471e2, /* 0x405D6B7A, 0xDA1884A9 */
|
||||
8.364_638_933_716_183, /* 0x4020BAB1, 0xF44E5192 */
|
||||
];
|
||||
|
||||
/* Note: This function is only called for ix>=0x40000000 (see above) */
|
||||
fn pone(x: f64) -> f64 {
|
||||
let ix = high_word(x) & 0x7fffffff;
|
||||
// ix>=0x40000000 && ix<=0x48000000)
|
||||
let (p, q) = if ix >= 0x40200000 {
|
||||
(PR8, PS8)
|
||||
} else if ix >= 0x40122E8B {
|
||||
(PR5, PS5)
|
||||
} else if ix >= 0x4006DB6D {
|
||||
(PR3, PS3)
|
||||
} else {
|
||||
(PR2, PS2)
|
||||
};
|
||||
let z = 1.0 / (x * x);
|
||||
let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
1.0 + r / s
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
const QR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-1.025_390_624_999_927_1e-1, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
||||
-1.627_175_345_445_9e1, /* 0xC0304591, 0xA26779F7 */
|
||||
-7.596_017_225_139_501e2, /* 0xC087BCD0, 0x53E4B576 */
|
||||
-1.184_980_667_024_295_9e4, /* 0xC0C724E7, 0x40F87415 */
|
||||
-4.843_851_242_857_503_5e4, /* 0xC0E7A6D0, 0x65D09C6A */
|
||||
];
|
||||
const QS8: [f64; 6] = [
|
||||
1.613_953_697_007_229e2, /* 0x40642CA6, 0xDE5BCDE5 */
|
||||
7.825_385_999_233_485e3, /* 0x40BE9162, 0xD0D88419 */
|
||||
1.338_753_362_872_495_8e5, /* 0x4100579A, 0xB0B75E98 */
|
||||
7.196_577_236_832_409e5, /* 0x4125F653, 0x72869C19 */
|
||||
6.666_012_326_177_764e5, /* 0x412457D2, 0x7719AD5C */
|
||||
-2.944_902_643_038_346_4e5, /* 0xC111F969, 0x0EA5AA18 */
|
||||
];
|
||||
|
||||
const QR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.089_799_311_417_641e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
||||
-1.025_390_502_413_754_3e-1, /* 0xBFBA3FFF, 0xCB597FEF */
|
||||
-8.056_448_281_239_36, /* 0xC0201CE6, 0xCA03AD4B */
|
||||
-1.836_696_074_748_883_8e2, /* 0xC066F56D, 0x6CA7B9B0 */
|
||||
-1.373_193_760_655_081_6e3, /* 0xC09574C6, 0x6931734F */
|
||||
-2.612_444_404_532_156_6e3, /* 0xC0A468E3, 0x88FDA79D */
|
||||
];
|
||||
const QS5: [f64; 6] = [
|
||||
8.127_655_013_843_358e1, /* 0x405451B2, 0xFF5A11B2 */
|
||||
1.991_798_734_604_859_6e3, /* 0x409F1F31, 0xE77BF839 */
|
||||
1.746_848_519_249_089e4, /* 0x40D10F1F, 0x0D64CE29 */
|
||||
4.985_142_709_103_523e4, /* 0x40E8576D, 0xAABAD197 */
|
||||
2.794_807_516_389_181_2e4, /* 0x40DB4B04, 0xCF7C364B */
|
||||
-4.719_183_547_951_285e3, /* 0xC0B26F2E, 0xFCFFA004 */
|
||||
];
|
||||
|
||||
const QR3: [f64; 6] = [
|
||||
-5.078_312_264_617_666e-9, /* 0xBE35CFA9, 0xD38FC84F */
|
||||
-1.025_378_298_208_370_9e-1, /* 0xBFBA3FEB, 0x51AEED54 */
|
||||
-4.610_115_811_394_734, /* 0xC01270C2, 0x3302D9FF */
|
||||
-5.784_722_165_627_836_4e1, /* 0xC04CEC71, 0xC25D16DA */
|
||||
-2.282_445_407_376_317e2, /* 0xC06C87D3, 0x4718D55F */
|
||||
-2.192_101_284_789_093_3e2, /* 0xC06B66B9, 0x5F5C1BF6 */
|
||||
];
|
||||
const QS3: [f64; 6] = [
|
||||
4.766_515_503_237_295e1, /* 0x4047D523, 0xCCD367E4 */
|
||||
6.738_651_126_766_997e2, /* 0x40850EEB, 0xC031EE3E */
|
||||
3.380_152_866_795_263_4e3, /* 0x40AA684E, 0x448E7C9A */
|
||||
5.547_729_097_207_228e3, /* 0x40B5ABBA, 0xA61D54A6 */
|
||||
1.903_119_193_388_108e3, /* 0x409DBC7A, 0x0DD4DF4B */
|
||||
-1.352_011_914_443_073_4e2, /* 0xC060E670, 0x290A311F */
|
||||
];
|
||||
|
||||
const QR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.783_817_275_109_588_7e-7, /* 0xBE87F126, 0x44C626D2 */
|
||||
-1.025_170_426_079_855_5e-1, /* 0xBFBA3E8E, 0x9148B010 */
|
||||
-2.752_205_682_781_874_6, /* 0xC0060484, 0x69BB4EDA */
|
||||
-1.966_361_626_437_037_2e1, /* 0xC033A9E2, 0xC168907F */
|
||||
-4.232_531_333_728_305e1, /* 0xC04529A3, 0xDE104AAA */
|
||||
-2.137_192_117_037_040_6e1, /* 0xC0355F36, 0x39CF6E52 */
|
||||
];
|
||||
const QS2: [f64; 6] = [
|
||||
2.953_336_290_605_238_5e1, /* 0x403D888A, 0x78AE64FF */
|
||||
2.529_815_499_821_905_3e2, /* 0x406F9F68, 0xDB821CBA */
|
||||
7.575_028_348_686_454e2, /* 0x4087AC05, 0xCE49A0F7 */
|
||||
7.393_932_053_204_672e2, /* 0x40871B25, 0x48D4C029 */
|
||||
1.559_490_033_366_661_2e2, /* 0x40637E5E, 0x3C3ED8D4 */
|
||||
-4.959_498_988_226_282, /* 0xC013D686, 0xE71BE86B */
|
||||
];
|
||||
|
||||
// Note: This function is only called for ix>=0x40000000 (see above)
|
||||
fn qone(x: f64) -> f64 {
|
||||
let ix = high_word(x) & 0x7fffffff;
|
||||
// ix>=0x40000000 && ix<=0x48000000
|
||||
let (p, q) = if ix >= 0x40200000 {
|
||||
(QR8, QS8)
|
||||
} else if ix >= 0x40122E8B {
|
||||
(QR5, QS5)
|
||||
} else if ix >= 0x4006DB6D {
|
||||
(QR3, QS3)
|
||||
} else {
|
||||
(QR2, QS2)
|
||||
};
|
||||
let z = 1.0 / (x * x);
|
||||
let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
(0.375 + r / s) / x
|
||||
}
|
||||
329
base/src/functions/engineering/transcendental/bessel_jn_yn.rs
Normal file
329
base/src/functions/engineering/transcendental/bessel_jn_yn.rs
Normal file
@@ -0,0 +1,329 @@
|
||||
// https://github.com/JuliaLang/openlibm/blob/master/src/e_jn.c
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by 0 signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<x, forward recursion us used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*/
|
||||
|
||||
use super::{
|
||||
bessel_j0_y0::{j0, y0},
|
||||
bessel_j1_y1::{j1, y1},
|
||||
bessel_util::{split_words, FRAC_2_SQRT_PI},
|
||||
};
|
||||
|
||||
// Special cases are:
|
||||
//
|
||||
// $ J_n(n, ±\Infinity) = 0$
|
||||
// $ J_n(n, NaN} = NaN $
|
||||
// $ J_n(n, 0) = 0 $
|
||||
pub(crate) fn jn(n: i32, x: f64) -> f64 {
|
||||
let (lx, mut hx) = split_words(x);
|
||||
let ix = 0x7fffffff & hx;
|
||||
// if J(n,NaN) is NaN
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
// if (ix | (/*(u_int32_t)*/(lx | -lx)) >> 31) > 0x7ff00000 {
|
||||
// return x + x;
|
||||
// }
|
||||
let (n, x) = if n < 0 {
|
||||
// hx ^= 0x80000000;
|
||||
hx = -hx;
|
||||
(-n, -x)
|
||||
} else {
|
||||
(n, x)
|
||||
};
|
||||
if n == 0 {
|
||||
return j0(x);
|
||||
}
|
||||
if n == 1 {
|
||||
return j1(x);
|
||||
}
|
||||
let sign = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
// let sign = if x < 0.0 { -1 } else { 1 };
|
||||
let x = x.abs();
|
||||
let b = if (ix | lx) == 0 || ix >= 0x7ff00000 {
|
||||
// if x is 0 or inf
|
||||
0.0
|
||||
} else if n as f64 <= x {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if ix >= 0x52D00000 {
|
||||
/* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=x.sin(), c=x.cos(),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
let temp = match n & 3 {
|
||||
0 => x.cos() + x.sin(),
|
||||
1 => -x.cos() + x.sin(),
|
||||
2 => -x.cos() - x.sin(),
|
||||
3 => x.cos() - x.sin(),
|
||||
_ => {
|
||||
// Impossible: FIXME!
|
||||
// panic!("")
|
||||
0.0
|
||||
}
|
||||
};
|
||||
FRAC_2_SQRT_PI * temp / x.sqrt()
|
||||
} else {
|
||||
let mut a = j0(x);
|
||||
let mut b = j1(x);
|
||||
for i in 1..n {
|
||||
let temp = b;
|
||||
b = b * (((i + i) as f64) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
b
|
||||
}
|
||||
} else {
|
||||
// x < 2^(-29)
|
||||
if ix < 0x3e100000 {
|
||||
// x is tiny, return the first Taylor expansion of J(n,x)
|
||||
// J(n,x) = 1/n!*(x/2)^n - ...
|
||||
if n > 33 {
|
||||
// underflow
|
||||
0.0
|
||||
} else {
|
||||
let temp = x * 0.5;
|
||||
let mut b = temp;
|
||||
let mut a = 1;
|
||||
for i in 2..=n {
|
||||
a *= i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b / (a as f64)
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
|
||||
let w = ((n + n) as f64) / x;
|
||||
let h = 2.0 / x;
|
||||
let mut q0 = w;
|
||||
let mut z = w + h;
|
||||
let mut q1 = w * z - 1.0;
|
||||
let mut k = 1;
|
||||
while q1 < 1.0e9 {
|
||||
k += 1;
|
||||
z += h;
|
||||
let tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
let m = n + n;
|
||||
let mut t = 0.0;
|
||||
for i in (m..2 * (n + k)).step_by(2).rev() {
|
||||
t = 1.0 / ((i as f64) / x - t);
|
||||
}
|
||||
// for (t=0, i = 2*(n+k); i>=m; i -= 2) t = 1/(i/x-t);
|
||||
let mut a = t;
|
||||
let mut b = 1.0;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to 0
|
||||
*/
|
||||
let mut tmp = n as f64;
|
||||
let v = 2.0 / x;
|
||||
tmp = tmp * f64::ln(f64::abs(v * tmp));
|
||||
if tmp < 7.097_827_128_933_84e2 {
|
||||
// for(i=n-1, di=(i+i); i>0; i--){
|
||||
let mut di = 2.0 * ((n - 1) as f64);
|
||||
for _ in (1..=n - 1).rev() {
|
||||
let temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= 2.0;
|
||||
}
|
||||
} else {
|
||||
// for(i=n-1, di=(i+i); i>0; i--) {
|
||||
let mut di = 2.0 * ((n - 1) as f64);
|
||||
for _ in (1..=n - 1).rev() {
|
||||
let temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= 2.0;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if b > 1e100 {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
let z = j0(x);
|
||||
let w = j1(x);
|
||||
if z.abs() >= w.abs() {
|
||||
t * z / b
|
||||
} else {
|
||||
t * w / a
|
||||
}
|
||||
}
|
||||
};
|
||||
if sign == 1 {
|
||||
-b
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
// Yn returns the order-n Bessel function of the second kind.
|
||||
//
|
||||
// Special cases are:
|
||||
//
|
||||
// Y(n, +Inf) = 0
|
||||
// Y(n ≥ 0, 0) = -Inf
|
||||
// Y(n < 0, 0) = +Inf if n is odd, -Inf if n is even
|
||||
// Y(n, x < 0) = NaN
|
||||
// Y(n, NaN) = NaN
|
||||
pub(crate) fn yn(n: i32, x: f64) -> f64 {
|
||||
let (lx, hx) = split_words(x);
|
||||
let ix = 0x7fffffff & hx;
|
||||
|
||||
// if Y(n, NaN) is NaN
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
// if (ix | (/*(u_int32_t)*/(lx | -lx)) >> 31) > 0x7ff00000 {
|
||||
// return x + x;
|
||||
// }
|
||||
|
||||
if (ix | lx) == 0 {
|
||||
return f64::NEG_INFINITY;
|
||||
}
|
||||
if hx < 0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
|
||||
let (n, sign) = if n < 0 {
|
||||
(-n, 1 - ((n & 1) << 1))
|
||||
} else {
|
||||
(n, 1)
|
||||
};
|
||||
if n == 0 {
|
||||
return y0(x);
|
||||
}
|
||||
if n == 1 {
|
||||
return (sign as f64) * y1(x);
|
||||
}
|
||||
if ix == 0x7ff00000 {
|
||||
return 0.0;
|
||||
}
|
||||
let b = if ix >= 0x52D00000 {
|
||||
// x > 2^302
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=x.sin(), c=x.cos(),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
let temp = match n & 3 {
|
||||
0 => x.sin() - x.cos(),
|
||||
1 => -x.sin() - x.cos(),
|
||||
2 => -x.sin() + x.cos(),
|
||||
3 => x.sin() + x.cos(),
|
||||
_ => {
|
||||
// unreachable
|
||||
0.0
|
||||
}
|
||||
};
|
||||
FRAC_2_SQRT_PI * temp / x.sqrt()
|
||||
} else {
|
||||
let mut a = y0(x);
|
||||
let mut b = y1(x);
|
||||
for i in 1..n {
|
||||
if b.is_infinite() {
|
||||
break;
|
||||
}
|
||||
// if high_word(b) != 0xfff00000 {
|
||||
// break;
|
||||
// }
|
||||
(a, b) = (b, ((2.0 * i as f64) / x) * b - a);
|
||||
}
|
||||
b
|
||||
};
|
||||
if sign > 0 {
|
||||
b
|
||||
} else {
|
||||
-b
|
||||
}
|
||||
}
|
||||
90
base/src/functions/engineering/transcendental/bessel_k.rs
Normal file
90
base/src/functions/engineering/transcendental/bessel_k.rs
Normal file
@@ -0,0 +1,90 @@
|
||||
// This are somewhat lower precision than the BesselJ and BesselY
|
||||
|
||||
use super::bessel_i::bessel_i0;
|
||||
use super::bessel_i::bessel_i1;
|
||||
|
||||
fn bessel_k0(x: f64) -> f64 {
|
||||
let p1 = -0.57721566;
|
||||
let p2 = 0.42278420;
|
||||
let p3 = 0.23069756;
|
||||
let p4 = 3.488590e-2;
|
||||
let p5 = 2.62698e-3;
|
||||
let p6 = 1.0750e-4;
|
||||
let p7 = 7.4e-6;
|
||||
|
||||
let q1 = 1.25331414;
|
||||
let q2 = -7.832358e-2;
|
||||
let q3 = 2.189568e-2;
|
||||
let q4 = -1.062446e-2;
|
||||
let q5 = 5.87872e-3;
|
||||
let q6 = -2.51540e-3;
|
||||
let q7 = 5.3208e-4;
|
||||
|
||||
if x <= 0.0 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
if x <= 2.0 {
|
||||
let y = x * x / 4.0;
|
||||
(-(x / 2.0).ln() * bessel_i0(x))
|
||||
+ (p1 + y * (p2 + y * (p3 + y * (p4 + y * (p5 + y * (p6 + y * p7))))))
|
||||
} else {
|
||||
let y = 2.0 / x;
|
||||
((-x).exp() / x.sqrt())
|
||||
* (q1 + y * (q2 + y * (q3 + y * (q4 + y * (q5 + y * (q6 + y * q7))))))
|
||||
}
|
||||
}
|
||||
|
||||
fn bessel_k1(x: f64) -> f64 {
|
||||
let p1 = 1.0;
|
||||
let p2 = 0.15443144;
|
||||
let p3 = -0.67278579;
|
||||
let p4 = -0.18156897;
|
||||
let p5 = -1.919402e-2;
|
||||
let p6 = -1.10404e-3;
|
||||
let p7 = -4.686e-5;
|
||||
|
||||
let q1 = 1.25331414;
|
||||
let q2 = 0.23498619;
|
||||
let q3 = -3.655620e-2;
|
||||
let q4 = 1.504268e-2;
|
||||
let q5 = -7.80353e-3;
|
||||
let q6 = 3.25614e-3;
|
||||
let q7 = -6.8245e-4;
|
||||
|
||||
if x <= 0.0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
|
||||
if x <= 2.0 {
|
||||
let y = x * x / 4.0;
|
||||
((x / 2.0).ln() * bessel_i1(x))
|
||||
+ (1. / x) * (p1 + y * (p2 + y * (p3 + y * (p4 + y * (p5 + y * (p6 + y * p7))))))
|
||||
} else {
|
||||
let y = 2.0 / x;
|
||||
((-x).exp() / x.sqrt())
|
||||
* (q1 + y * (q2 + y * (q3 + y * (q4 + y * (q5 + y * (q6 + y * q7))))))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn bessel_k(n: i32, x: f64) -> f64 {
|
||||
if x <= 0.0 || n < 0 {
|
||||
return f64::NAN;
|
||||
}
|
||||
|
||||
if n == 0 {
|
||||
return bessel_k0(x);
|
||||
}
|
||||
if n == 1 {
|
||||
return bessel_k1(x);
|
||||
}
|
||||
|
||||
// Perform upward recurrence for all x
|
||||
let tox = 2.0 / x;
|
||||
let mut bkm = bessel_k0(x);
|
||||
let mut bk = bessel_k1(x);
|
||||
for j in 1..n {
|
||||
(bkm, bk) = (bk, bkm + (j as f64) * tox * bk);
|
||||
}
|
||||
bk
|
||||
}
|
||||
19
base/src/functions/engineering/transcendental/bessel_util.rs
Normal file
19
base/src/functions/engineering/transcendental/bessel_util.rs
Normal file
@@ -0,0 +1,19 @@
|
||||
pub(crate) const HUGE: f64 = 1e300;
|
||||
pub(crate) const FRAC_2_SQRT_PI: f64 = 5.641_895_835_477_563e-1;
|
||||
|
||||
pub(crate) fn high_word(x: f64) -> i32 {
|
||||
let [_, _, _, _, a1, a2, a3, a4] = x.to_ne_bytes();
|
||||
// let binding = x.to_ne_bytes();
|
||||
// let high = <&[u8; 4]>::try_from(&binding[4..8]).expect("");
|
||||
i32::from_ne_bytes([a1, a2, a3, a4])
|
||||
}
|
||||
|
||||
pub(crate) fn split_words(x: f64) -> (i32, i32) {
|
||||
let [a1, a2, a3, a4, b1, b2, b3, b4] = x.to_ne_bytes();
|
||||
// let binding = x.to_ne_bytes();
|
||||
// let high = <&[u8; 4]>::try_from(&binding[4..8]).expect("");
|
||||
(
|
||||
i32::from_ne_bytes([a1, a2, a3, a4]),
|
||||
i32::from_ne_bytes([b1, b2, b3, b4]),
|
||||
)
|
||||
}
|
||||
14
base/src/functions/engineering/transcendental/create_test.jl
Normal file
14
base/src/functions/engineering/transcendental/create_test.jl
Normal file
@@ -0,0 +1,14 @@
|
||||
# Example file creating testing cases for BesselI
|
||||
|
||||
using Nemo
|
||||
|
||||
CC = AcbField(100)
|
||||
|
||||
values = [1, 2, 3, -2, 5, 30, 2e-8]
|
||||
|
||||
for value in values
|
||||
y_acb = besseli(CC(1), CC(value))
|
||||
real64 = convert(Float64, real(y_acb))
|
||||
im64 = convert(Float64, real(y_acb))
|
||||
println("(", value, ", ", real64, "),")
|
||||
end
|
||||
53
base/src/functions/engineering/transcendental/erf.rs
Normal file
53
base/src/functions/engineering/transcendental/erf.rs
Normal file
@@ -0,0 +1,53 @@
|
||||
pub(crate) fn erf(x: f64) -> f64 {
|
||||
let cof = vec![
|
||||
-1.3026537197817094,
|
||||
6.419_697_923_564_902e-1,
|
||||
1.9476473204185836e-2,
|
||||
-9.561_514_786_808_63e-3,
|
||||
-9.46595344482036e-4,
|
||||
3.66839497852761e-4,
|
||||
4.2523324806907e-5,
|
||||
-2.0278578112534e-5,
|
||||
-1.624290004647e-6,
|
||||
1.303655835580e-6,
|
||||
1.5626441722e-8,
|
||||
-8.5238095915e-8,
|
||||
6.529054439e-9,
|
||||
5.059343495e-9,
|
||||
-9.91364156e-10,
|
||||
-2.27365122e-10,
|
||||
9.6467911e-11,
|
||||
2.394038e-12,
|
||||
-6.886027e-12,
|
||||
8.94487e-13,
|
||||
3.13092e-13,
|
||||
-1.12708e-13,
|
||||
3.81e-16,
|
||||
7.106e-15,
|
||||
-1.523e-15,
|
||||
-9.4e-17,
|
||||
1.21e-16,
|
||||
-2.8e-17,
|
||||
];
|
||||
|
||||
let mut d = 0.0;
|
||||
let mut dd = 0.0;
|
||||
|
||||
let x_abs = x.abs();
|
||||
|
||||
let t = 2.0 / (2.0 + x_abs);
|
||||
let ty = 4.0 * t - 2.0;
|
||||
|
||||
for j in (1..=cof.len() - 1).rev() {
|
||||
let tmp = d;
|
||||
d = ty * d - dd + cof[j];
|
||||
dd = tmp;
|
||||
}
|
||||
|
||||
let res = t * f64::exp(-x_abs * x_abs + 0.5 * (cof[0] + ty * d) - dd);
|
||||
if x < 0.0 {
|
||||
res - 1.0
|
||||
} else {
|
||||
1.0 - res
|
||||
}
|
||||
}
|
||||
16
base/src/functions/engineering/transcendental/mod.rs
Normal file
16
base/src/functions/engineering/transcendental/mod.rs
Normal file
@@ -0,0 +1,16 @@
|
||||
mod bessel_i;
|
||||
mod bessel_j0_y0;
|
||||
mod bessel_j1_y1;
|
||||
mod bessel_jn_yn;
|
||||
mod bessel_k;
|
||||
mod bessel_util;
|
||||
mod erf;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test_bessel;
|
||||
|
||||
pub(crate) use bessel_i::bessel_i;
|
||||
pub(crate) use bessel_jn_yn::jn as bessel_j;
|
||||
pub(crate) use bessel_jn_yn::yn as bessel_y;
|
||||
pub(crate) use bessel_k::bessel_k;
|
||||
pub(crate) use erf::erf;
|
||||
183
base/src/functions/engineering/transcendental/test_bessel.rs
Normal file
183
base/src/functions/engineering/transcendental/test_bessel.rs
Normal file
@@ -0,0 +1,183 @@
|
||||
use crate::functions::engineering::transcendental::bessel_k;
|
||||
|
||||
use super::{
|
||||
bessel_i::bessel_i,
|
||||
bessel_j0_y0::{j0, y0},
|
||||
bessel_j1_y1::j1,
|
||||
bessel_jn_yn::{jn, yn},
|
||||
};
|
||||
|
||||
const EPS: f64 = 1e-13;
|
||||
const EPS_LOW: f64 = 1e-6;
|
||||
|
||||
// Known values computed with Arb via Nemo.jl in Julia
|
||||
// You can also use Mathematica
|
||||
/// But please do not use Excel or any other software without arbitrary precision
|
||||
|
||||
fn numbers_are_close(a: f64, b: f64) -> bool {
|
||||
if a == b {
|
||||
// avoid underflow if a = b = 0.0
|
||||
return true;
|
||||
}
|
||||
(a - b).abs() / ((a * a + b * b).sqrt()) < EPS
|
||||
}
|
||||
|
||||
fn numbers_are_somewhat_close(a: f64, b: f64) -> bool {
|
||||
if a == b {
|
||||
// avoid underflow if a = b = 0.0
|
||||
return true;
|
||||
}
|
||||
(a - b).abs() / ((a * a + b * b).sqrt()) < EPS_LOW
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_j0_known_values() {
|
||||
let cases = [
|
||||
(2.4, 0.002507683297243813),
|
||||
(0.5, 0.9384698072408129),
|
||||
(1.0, 0.7651976865579666),
|
||||
(1.12345, 0.7084999488947348),
|
||||
(27.0, 0.07274191800588709),
|
||||
(33.0, 0.09727067223550946),
|
||||
(2e-4, 0.9999999900000001),
|
||||
(0.0, 1.0),
|
||||
(1e10, 2.175591750246892e-6),
|
||||
];
|
||||
for (value, known) in cases {
|
||||
let f = j0(value);
|
||||
assert!(
|
||||
numbers_are_close(f, known),
|
||||
"Got: {f}, expected: {known} for j0({value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_y0_known_values() {
|
||||
let cases = [
|
||||
(2.4, 0.5104147486657438),
|
||||
(0.5, -0.4445187335067065),
|
||||
(1.0, 0.08825696421567692),
|
||||
(1.12345, 0.1783162909790613),
|
||||
(27.0, 0.1352149762078722),
|
||||
(33.0, 0.0991348255208796),
|
||||
(2e-4, -5.496017824512429),
|
||||
(1e10, -7.676508175792937e-6),
|
||||
(1e-300, -439.8351636227653),
|
||||
];
|
||||
for (value, known) in cases {
|
||||
let f = y0(value);
|
||||
assert!(
|
||||
numbers_are_close(f, known),
|
||||
"Got: {f}, expected: {known} for y0({value})"
|
||||
);
|
||||
}
|
||||
assert!(y0(0.0).is_infinite());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_j1_known_values() {
|
||||
// Values computed with Maxima, the computer algebra system
|
||||
// TODO: Recompute
|
||||
let cases = [
|
||||
(2.4, 0.5201852681819311),
|
||||
(0.5, 0.2422684576748738),
|
||||
(1.0, 0.4400505857449335),
|
||||
(1.17232, 0.4910665691824317),
|
||||
(27.5, 0.1521418932046569),
|
||||
(42.0, -0.04599388822188721),
|
||||
(3e-5, 1.499999999831249E-5),
|
||||
(350.0, -0.02040531295214455),
|
||||
(0.0, 0.0),
|
||||
(1e12, -7.913802683850441e-7),
|
||||
];
|
||||
for (value, known) in cases {
|
||||
let f = j1(value);
|
||||
assert!(
|
||||
numbers_are_close(f, known),
|
||||
"Got: {f}, expected: {known} for j1({value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_jn_known_values() {
|
||||
// Values computed with Maxima, the computer algebra system
|
||||
// TODO: Recompute
|
||||
let cases = [
|
||||
(3, 0.5, 0.002_563_729_994_587_244),
|
||||
(4, 0.5, 0.000_160_736_476_364_287_6),
|
||||
(-3, 0.5, -0.002_563_729_994_587_244),
|
||||
(-4, 0.5, 0.000_160_736_476_364_287_6),
|
||||
(3, 30.0, 0.129211228759725),
|
||||
(-3, 30.0, -0.129211228759725),
|
||||
(4, 30.0, -0.052609000321320355),
|
||||
(20, 30.0, 0.0048310199934040645),
|
||||
(7, 0.0, 0.0),
|
||||
];
|
||||
for (n, value, known) in cases {
|
||||
let f = jn(n, value);
|
||||
assert!(
|
||||
numbers_are_close(f, known),
|
||||
"Got: {f}, expected: {known} for jn({n}, {value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_yn_known_values() {
|
||||
let cases = [
|
||||
(3, 0.5, -42.059494304723883),
|
||||
(4, 0.5, -499.272_560_819_512_3),
|
||||
(-3, 0.5, 42.059494304723883),
|
||||
(-4, 0.5, -499.272_560_819_512_3),
|
||||
(3, 35.0, -0.13191405300596323),
|
||||
(-12, 12.2, -0.310438011314211),
|
||||
(7, 1e12, 1.016_712_505_197_956_3e-7),
|
||||
(35, 3.0, -6.895_879_073_343_495e31),
|
||||
];
|
||||
for (n, value, known) in cases {
|
||||
let f = yn(n, value);
|
||||
assert!(
|
||||
numbers_are_close(f, known),
|
||||
"Got: {f}, expected: {known} for yn({n}, {value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_in_known_values() {
|
||||
let cases = [
|
||||
(1, 0.5, 0.2578943053908963),
|
||||
(3, 0.5, 0.002645111968990286),
|
||||
(7, 0.2, 1.986608521182497e-11),
|
||||
(7, 0.0, 0.0),
|
||||
(0, -0.5, 1.0634833707413236),
|
||||
// worse case scenario
|
||||
(0, 3.7499, 9.118167894541882),
|
||||
(0, 3.7501, 9.119723897590003),
|
||||
];
|
||||
for (n, value, known) in cases {
|
||||
let f = bessel_i(n, value);
|
||||
assert!(
|
||||
numbers_are_somewhat_close(f, known),
|
||||
"Got: {f}, expected: {known} for in({n}, {value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bessel_kn_known_values() {
|
||||
let cases = [
|
||||
(1, 0.5, 1.656441120003301),
|
||||
(0, 0.5, 0.9244190712276659),
|
||||
(3, 0.5, 62.05790952993026),
|
||||
];
|
||||
for (n, value, known) in cases {
|
||||
let f = bessel_k(n, value);
|
||||
assert!(
|
||||
numbers_are_somewhat_close(f, known),
|
||||
"Got: {f}, expected: {known} for kn({n}, {value})"
|
||||
);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user