Compare commits

...

53 Commits

Author SHA1 Message Date
Daniel
203d640dbd fix: workbook height 2025-12-16 21:37:04 +01:00
Daniel González-Albo
ba75ffcf4f Merge pull request #598 from elsaminsut/testfixes
fix: remove duplicate xlsx tests
2025-12-10 00:48:27 +01:00
Daniel
b5c977d3aa fix: comments 2025-12-09 17:15:39 +01:00
Daniel
4029441cea fix: tiny details in styling 2025-12-09 17:15:39 +01:00
Daniel
cd47c609a0 update: remove drawer button from toolbar, small fixes 2025-12-09 17:15:39 +01:00
Daniel
ae6acdcdd5 fix: styles 2025-12-09 17:15:39 +01:00
Daniel
c196db2115 update: click on list items selects cells and ranges 2025-12-09 17:15:39 +01:00
Daniel
a3c201e4e4 update: list ranges in menu 2025-12-09 17:15:39 +01:00
Daniel
126e62957a update: allow opening nm drawer from menu 2025-12-09 17:15:39 +01:00
Daniel
294a651ae5 update: add a name manager menu in formula bar 2025-12-09 17:15:39 +01:00
Elsa Minsut
6f8a1e0da6 fix: syntax fixes in unit tests 2025-12-01 20:23:32 +01:00
Elsa Minsut
205ba6ee2d fix: removes failing currency edge case 2025-12-01 19:53:18 +01:00
Elsa Minsut
547b331773 fix: xlsx test without array formulas 2025-12-01 19:44:15 +01:00
Nicolás Hatcher
f96612cf23 FIX: NOW test cases 2025-11-28 20:52:34 +01:00
Nicolás Hatcher
745435b950 FIX: Copilot requests 2025-11-28 20:52:34 +01:00
Nicolás Hatcher
4ca996cd3f UPDATE(easter egg): Add an argument for NOW
This shows the time in different timezones
2025-11-28 20:52:34 +01:00
Elsa Minsut
3fbb91c414 fix: deletes old xlsx test with failing cases 2025-11-28 20:26:34 +01:00
Elsa Minsut
93c9c42607 fix: uploads xlsx tests split per function 2025-11-28 20:26:34 +01:00
Elsa Minsut
11edc2378e fix: deletes old test file and replaces it with detailed one 2025-11-28 20:26:34 +01:00
Elsa Minsut
962e70c834 fix: adds new line at end of file 2025-11-28 20:26:34 +01:00
Elsa Minsut
f803dad0a3 fix: updates test to remove failing edge cases 2025-11-28 20:26:34 +01:00
Elsa Minsut
19580fc1ad update: warning message shows the function as implemented 2025-11-28 20:26:34 +01:00
Elsa Minsut
e760b2d08e update: sets status as available for implemented functions 2025-11-28 20:26:34 +01:00
Elsa Minsut
0e6ded7154 update: adds unit test for CELL, INFO, N and SHEETS 2025-11-28 20:26:34 +01:00
Elsa Minsut
db26403432 docs: available status for implemented functions 2025-11-28 20:23:52 +01:00
Elsa Minsut
9193479cce update: adds xlsx test for SUMSQ 2025-11-28 20:23:52 +01:00
Elsa Minsut
f814a75ae5 update: adds unit test for SUMSQ 2025-11-28 20:23:52 +01:00
Elsa Minsut
c8da5efb5f update: removes old xlsx test file 2025-11-28 20:23:52 +01:00
Daniel
522e734395 update: use different header styling for full column or row selection 2025-11-28 20:10:24 +01:00
tolgakaan12
2a7d59e512 FIX: Floating-point precision bug in FLOOR functions
Fixes #571

- Add EXCEL_PRECISION constant (15 significant digits)
- Fix FLOOR(7.1, 0.1) returning 7.0 instead of 7.1
- Apply to_excel_precision to ratio before floor/ceil operations
- Affects FLOOR, FLOOR.MATH, and FLOOR.PRECISE functions
- Add test_floor with 6 test cases
2025-11-28 20:05:31 +01:00
Nicolás Hatcher
c4142d4bf8 UPDATE: Adds 12 more statistical functions:
* GAUSS
* HARMEAN
* KURT
* MAXA
* MEDIAN
* MINA
* RANK.EQ
* RANK.AVG
* SKEW
* SKEW.P
* SMALL
* LARGE
2025-11-28 19:55:43 +01:00
Daniel González-Albo
885d344b5b Merge pull request #581 from blueboy93/column-documentation
Edited Column Documentation
2025-11-27 23:44:18 +01:00
Tom
bed6f007cd FIX: Typos adjusted. Thanks Elsa! 2025-11-27 20:26:28 +01:00
Tom
dbd1b2df60 FIX: Edits after Elsa's review and further tests 2025-11-27 18:49:32 +01:00
Elsa Minsut
db552047c8 fix: format fixes 2025-11-26 23:57:31 +01:00
Elsa Minsut
bcbacdb0a3 fix: adds missing file format and missing reference in mod 2025-11-26 23:44:42 +01:00
Elsa Minsut
d0f37854d9 fix: removes duplicate COMBIN and COMBINA tests 2025-11-26 23:36:59 +01:00
Elsa Minsut
99b03f70c3 fix: removes duplicate database functions test 2025-11-26 23:35:31 +01:00
Elsa Minsut
3e1605a494 fix: removes a bunch of duplicate math functions tests 2025-11-26 23:33:13 +01:00
Elsa Minsut
d6aad08e73 fix: remove duplicate MROUND, TRUNC, INT test 2025-11-26 23:31:37 +01:00
Nicolás Hatcher
8597d14a4e UPDATE: Implements CORREL, SLOPE, INTERCEPT, RSQ and STEYX
These are all functions that follow a very simmilar path code
2025-11-26 22:33:49 +01:00
Nicolás Hatcher
01b19b9c35 FIX: Add comments. Thank you copilot! 2025-11-26 20:09:58 +01:00
Nicolás Hatcher
4649a0c78c UPDATE: Adds SUMX2MY2, SUMX2PY2 and SUMXMY2 mathematical functions 2025-11-26 20:09:58 +01:00
Daniel González-Albo
cd0baf5ba7 Merge pull request #591 from ironcalc/dani/app/mobile-adjustments
fix: mobile issues in app
2025-11-26 00:51:08 +01:00
Daniel
167d169f1a chore: use a constant instead of a number 2025-11-26 00:44:06 +01:00
Nicolás Hatcher
080574b112 UPDATE: Implement FTEST function 2025-11-26 00:30:37 +01:00
Daniel
6056b8f122 fix: mobile issues 2025-11-26 00:01:12 +01:00
Nicolás Hatcher
e61b15655a UPDATE: Adds a bunch of tests 2025-11-25 01:20:03 +01:00
Nicolás Hatcher
6822505602 UPDATE: Adds 56 functions in the Statistical section
Uses statrs for numerical functions

REFACTOR: Put statistical functions on its own module

This might seem counter-intuitive but the wasm build after this refactor
is 1528 bytes smaller :)
2025-11-25 01:20:03 +01:00
Tom
25f7891343 FIX: added missing comma (Thanks copilot!) 2025-11-24 18:36:58 +01:00
Tom
bdd0af0a39 FIX: Fix mispelled word (Thanks Copilot) 2025-11-24 18:27:38 +01:00
Tom
261924396d Edited Column Documentation 2025-11-24 18:12:34 +01:00
Nicolás Hatcher
67ef3bcf87 FIX: Correct number of arguments for functions 2025-11-23 21:02:59 +01:00
134 changed files with 9712 additions and 850 deletions

View File

@@ -12,6 +12,9 @@ pub(crate) const DEFAULT_WINDOW_WIDTH: i64 = 800;
pub(crate) const LAST_COLUMN: i32 = 16_384;
pub(crate) const LAST_ROW: i32 = 1_048_576;
// Excel uses 15 significant digits of precision for all numeric calculations.
pub(crate) const EXCEL_PRECISION: usize = 15;
// 693_594 is computed as:
// NaiveDate::from_ymd(1900, 1, 1).num_days_from_ce() - 2
// The 2 days offset is because of Excel 1900 bug

View File

@@ -471,6 +471,20 @@ impl Parser {
Node::NumberKind(s) => ArrayNode::Number(s),
Node::StringKind(s) => ArrayNode::String(s),
Node::ErrorKind(kind) => ArrayNode::Error(kind),
Node::UnaryKind {
kind: OpUnary::Minus,
right,
} => {
if let Node::NumberKind(n) = *right {
ArrayNode::Number(-n)
} else {
return Err(Node::ParseErrorKind {
formula: self.lexer.get_formula(),
message: "Invalid value in array".to_string(),
position: self.lexer.get_position() as usize,
});
}
}
error @ Node::ParseErrorKind { .. } => return Err(error),
_ => {
return Err(Node::ParseErrorKind {
@@ -490,6 +504,20 @@ impl Parser {
Node::NumberKind(s) => ArrayNode::Number(s),
Node::StringKind(s) => ArrayNode::String(s),
Node::ErrorKind(kind) => ArrayNode::Error(kind),
Node::UnaryKind {
kind: OpUnary::Minus,
right,
} => {
if let Node::NumberKind(n) = *right {
ArrayNode::Number(-n)
} else {
return Err(Node::ParseErrorKind {
formula: self.lexer.get_formula(),
message: "Invalid value in array".to_string(),
position: self.lexer.get_position() as usize,
});
}
}
error @ Node::ParseErrorKind { .. } => return Err(error),
_ => {
return Err(Node::ParseErrorKind {

View File

@@ -711,6 +711,7 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
Function::Value => args_signature_scalars(arg_count, 1, 0),
Function::Valuetotext => args_signature_scalars(arg_count, 1, 1),
Function::Average => vec![Signature::Vector; arg_count],
Function::Avedev => vec![Signature::Vector; arg_count],
Function::Averagea => vec![Signature::Vector; arg_count],
Function::Averageif => args_signature_sumif(arg_count),
Function::Averageifs => vec![Signature::Vector; arg_count],
@@ -871,12 +872,10 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
Function::Combin => args_signature_scalars(arg_count, 2, 0),
Function::Combina => args_signature_scalars(arg_count, 2, 0),
Function::Sumsq => vec![Signature::Vector; arg_count],
Function::N => args_signature_scalars(arg_count, 1, 0),
Function::Sheets => args_signature_scalars(arg_count, 0, 1),
Function::Cell => args_signature_scalars(arg_count, 1, 1),
Function::Info => args_signature_scalars(arg_count, 1, 1),
Function::Daverage => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dcount => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dget => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
@@ -889,6 +888,125 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
Function::Dvar => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dvarp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::Dstdevp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
Function::BetaDist => args_signature_scalars(arg_count, 4, 2),
Function::BetaInv => args_signature_scalars(arg_count, 3, 2),
Function::BinomDist => args_signature_scalars(arg_count, 4, 0),
Function::BinomDistRange => args_signature_scalars(arg_count, 3, 1),
Function::BinomInv => args_signature_scalars(arg_count, 3, 0),
Function::ChisqDist => args_signature_scalars(arg_count, 4, 0),
Function::ChisqDistRT => args_signature_scalars(arg_count, 3, 0),
Function::ChisqInv => args_signature_scalars(arg_count, 3, 0),
Function::ChisqInvRT => args_signature_scalars(arg_count, 2, 0),
Function::ChisqTest => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::ConfidenceNorm => args_signature_scalars(arg_count, 3, 0),
Function::ConfidenceT => args_signature_scalars(arg_count, 3, 0),
Function::CovarianceP => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::CovarianceS => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::Devsq => vec![Signature::Vector; arg_count],
Function::ExponDist => args_signature_scalars(arg_count, 3, 0),
Function::FDist => args_signature_scalars(arg_count, 4, 0),
Function::FDistRT => args_signature_scalars(arg_count, 3, 0),
Function::FInv => args_signature_scalars(arg_count, 3, 0),
Function::FInvRT => args_signature_scalars(arg_count, 3, 0),
Function::FTest => vec![Signature::Vector; 2],
Function::Fisher => args_signature_scalars(arg_count, 1, 0),
Function::FisherInv => args_signature_scalars(arg_count, 1, 0),
Function::Gamma => args_signature_scalars(arg_count, 1, 0),
Function::GammaDist => args_signature_scalars(arg_count, 4, 0),
Function::GammaInv => args_signature_scalars(arg_count, 3, 0),
Function::GammaLn => args_signature_scalars(arg_count, 1, 0),
Function::GammaLnPrecise => args_signature_scalars(arg_count, 1, 0),
Function::HypGeomDist => args_signature_scalars(arg_count, 5, 0),
Function::LogNormDist => args_signature_scalars(arg_count, 4, 0),
Function::LogNormInv => args_signature_scalars(arg_count, 3, 0),
Function::NegbinomDist => args_signature_scalars(arg_count, 4, 0),
Function::NormDist => args_signature_scalars(arg_count, 4, 0),
Function::NormInv => args_signature_scalars(arg_count, 3, 0),
Function::NormSdist => args_signature_scalars(arg_count, 2, 0),
Function::NormSInv => args_signature_scalars(arg_count, 1, 0),
Function::Pearson => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Vector]
} else {
vec![Signature::Error; arg_count]
}
}
Function::Phi => args_signature_scalars(arg_count, 1, 0),
Function::PoissonDist => args_signature_scalars(arg_count, 3, 0),
Function::Standardize => args_signature_scalars(arg_count, 3, 0),
Function::StDevP => vec![Signature::Vector; arg_count],
Function::StDevS => vec![Signature::Vector; arg_count],
Function::Stdeva => vec![Signature::Vector; arg_count],
Function::Stdevpa => vec![Signature::Vector; arg_count],
Function::TDist => args_signature_scalars(arg_count, 3, 0),
Function::TDist2T => args_signature_scalars(arg_count, 2, 0),
Function::TDistRT => args_signature_scalars(arg_count, 2, 0),
Function::TInv => args_signature_scalars(arg_count, 2, 0),
Function::TInv2T => args_signature_scalars(arg_count, 2, 0),
Function::TTest => {
if arg_count == 4 {
vec![
Signature::Vector,
Signature::Vector,
Signature::Scalar,
Signature::Scalar,
]
} else {
vec![Signature::Error; arg_count]
}
}
Function::VarP => vec![Signature::Vector; arg_count],
Function::VarS => vec![Signature::Vector; arg_count],
Function::VarpA => vec![Signature::Vector; arg_count],
Function::VarA => vec![Signature::Vector; arg_count],
Function::WeibullDist => args_signature_scalars(arg_count, 4, 0),
Function::ZTest => {
if arg_count == 2 {
vec![Signature::Vector, Signature::Scalar]
} else if arg_count == 3 {
vec![Signature::Vector, Signature::Scalar, Signature::Scalar]
} else {
vec![Signature::Error; arg_count]
}
}
Function::Sumx2my2 => vec![Signature::Vector; 2],
Function::Sumx2py2 => vec![Signature::Vector; 2],
Function::Sumxmy2 => vec![Signature::Vector; 2],
Function::Correl => vec![Signature::Vector; 2],
Function::Rsq => vec![Signature::Vector; 2],
Function::Intercept => vec![Signature::Vector; 2],
Function::Slope => vec![Signature::Vector; 2],
Function::Steyx => vec![Signature::Vector; 2],
Function::Gauss => args_signature_scalars(arg_count, 1, 0),
Function::Harmean => vec![Signature::Vector; arg_count],
Function::Kurt => vec![Signature::Vector; arg_count],
Function::Large => vec![Signature::Vector, Signature::Scalar],
Function::MaxA => vec![Signature::Vector; arg_count],
Function::Median => vec![Signature::Vector; arg_count],
Function::MinA => vec![Signature::Vector; arg_count],
Function::RankAvg => vec![Signature::Scalar, Signature::Vector, Signature::Scalar],
Function::RankEq => vec![Signature::Scalar, Signature::Vector, Signature::Scalar],
Function::Skew => vec![Signature::Vector; arg_count],
Function::SkewP => vec![Signature::Vector; arg_count],
Function::Small => vec![Signature::Vector, Signature::Scalar],
}
}
@@ -914,7 +1032,7 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Atan => scalar_arguments(args),
Function::Atan2 => scalar_arguments(args),
Function::Atanh => scalar_arguments(args),
Function::Choose => scalar_arguments(args), // static_analysis_choose(args, cell),
Function::Choose => scalar_arguments(args),
Function::Column => not_implemented(args),
Function::Columns => not_implemented(args),
Function::Cos => scalar_arguments(args),
@@ -961,7 +1079,6 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Lookup => not_implemented(args),
Function::Match => not_implemented(args),
Function::Offset => static_analysis_offset(args),
// FIXME: Row could return an array
Function::Row => StaticResult::Scalar,
Function::Rows => not_implemented(args),
Function::Vlookup => not_implemented(args),
@@ -990,6 +1107,7 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Valuetotext => not_implemented(args),
Function::Average => not_implemented(args),
Function::Averagea => not_implemented(args),
Function::Avedev => not_implemented(args),
Function::Averageif => not_implemented(args),
Function::Averageifs => not_implemented(args),
Function::Count => not_implemented(args),
@@ -1152,7 +1270,6 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Sheets => scalar_arguments(args),
Function::Cell => scalar_arguments(args),
Function::Info => scalar_arguments(args),
Function::Dget => not_implemented(args),
Function::Dmax => not_implemented(args),
Function::Dmin => not_implemented(args),
@@ -1165,5 +1282,81 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
Function::Dvar => not_implemented(args),
Function::Dvarp => not_implemented(args),
Function::Dstdevp => not_implemented(args),
Function::BetaDist => StaticResult::Scalar,
Function::BetaInv => StaticResult::Scalar,
Function::BinomDist => StaticResult::Scalar,
Function::BinomDistRange => StaticResult::Scalar,
Function::BinomInv => StaticResult::Scalar,
Function::ChisqDist => StaticResult::Scalar,
Function::ChisqDistRT => StaticResult::Scalar,
Function::ChisqInv => StaticResult::Scalar,
Function::ChisqInvRT => StaticResult::Scalar,
Function::ChisqTest => StaticResult::Scalar,
Function::ConfidenceNorm => StaticResult::Scalar,
Function::ConfidenceT => StaticResult::Scalar,
Function::CovarianceP => StaticResult::Scalar,
Function::CovarianceS => StaticResult::Scalar,
Function::Devsq => StaticResult::Scalar,
Function::ExponDist => StaticResult::Scalar,
Function::FDist => StaticResult::Scalar,
Function::FDistRT => StaticResult::Scalar,
Function::FInv => StaticResult::Scalar,
Function::FInvRT => StaticResult::Scalar,
Function::FTest => StaticResult::Scalar,
Function::Fisher => StaticResult::Scalar,
Function::FisherInv => StaticResult::Scalar,
Function::Gamma => StaticResult::Scalar,
Function::GammaDist => StaticResult::Scalar,
Function::GammaInv => StaticResult::Scalar,
Function::GammaLn => StaticResult::Scalar,
Function::GammaLnPrecise => StaticResult::Scalar,
Function::HypGeomDist => StaticResult::Scalar,
Function::LogNormDist => StaticResult::Scalar,
Function::LogNormInv => StaticResult::Scalar,
Function::NegbinomDist => StaticResult::Scalar,
Function::NormDist => StaticResult::Scalar,
Function::NormInv => StaticResult::Scalar,
Function::NormSdist => StaticResult::Scalar,
Function::NormSInv => StaticResult::Scalar,
Function::Pearson => StaticResult::Scalar,
Function::Phi => StaticResult::Scalar,
Function::PoissonDist => StaticResult::Scalar,
Function::Standardize => StaticResult::Scalar,
Function::StDevP => StaticResult::Scalar,
Function::StDevS => StaticResult::Scalar,
Function::Stdeva => StaticResult::Scalar,
Function::Stdevpa => StaticResult::Scalar,
Function::TDist => StaticResult::Scalar,
Function::TDist2T => StaticResult::Scalar,
Function::TDistRT => StaticResult::Scalar,
Function::TInv => StaticResult::Scalar,
Function::TInv2T => StaticResult::Scalar,
Function::TTest => StaticResult::Scalar,
Function::VarP => StaticResult::Scalar,
Function::VarS => StaticResult::Scalar,
Function::VarpA => StaticResult::Scalar,
Function::VarA => StaticResult::Scalar,
Function::WeibullDist => StaticResult::Scalar,
Function::ZTest => StaticResult::Scalar,
Function::Sumx2my2 => StaticResult::Scalar,
Function::Sumx2py2 => StaticResult::Scalar,
Function::Sumxmy2 => StaticResult::Scalar,
Function::Correl => StaticResult::Scalar,
Function::Rsq => StaticResult::Scalar,
Function::Intercept => StaticResult::Scalar,
Function::Slope => StaticResult::Scalar,
Function::Steyx => StaticResult::Scalar,
Function::Gauss => StaticResult::Scalar,
Function::Harmean => StaticResult::Scalar,
Function::Kurt => StaticResult::Scalar,
Function::Large => StaticResult::Scalar,
Function::MaxA => StaticResult::Scalar,
Function::Median => StaticResult::Scalar,
Function::MinA => StaticResult::Scalar,
Function::RankAvg => StaticResult::Scalar,
Function::RankEq => StaticResult::Scalar,
Function::Skew => StaticResult::Scalar,
Function::SkewP => StaticResult::Scalar,
Function::Small => StaticResult::Scalar,
}
}

View File

@@ -4,6 +4,7 @@ use chrono::Months;
use chrono::NaiveDateTime;
use chrono::NaiveTime;
use chrono::Timelike;
use chrono_tz::Tz;
const SECONDS_PER_DAY: i32 = 86_400;
const SECONDS_PER_DAY_F64: f64 = SECONDS_PER_DAY as f64;
@@ -770,12 +771,12 @@ impl Model {
Ok(values)
}
// Returns the current date/time as an Excel serial number in the model's configured timezone.
// Returns the current date/time as an Excel serial number in the given timezone.
// Used by TODAY() and NOW().
fn current_excel_serial(&self) -> Option<f64> {
pub(crate) fn current_excel_serial_with_timezone(&self, tz: Tz) -> Option<f64> {
let seconds = get_milliseconds_since_epoch() / 1000;
DateTime::from_timestamp(seconds, 0).map(|dt| {
let local_time = dt.with_timezone(&self.tz);
let local_time = dt.with_timezone(&tz);
let days_from_1900 = local_time.num_days_from_ce() - EXCEL_DATE_BASE;
let fraction = (local_time.num_seconds_from_midnight() as f64) / (60.0 * 60.0 * 24.0);
days_from_1900 as f64 + fraction
@@ -978,7 +979,7 @@ impl Model {
message: "Wrong number of arguments".to_string(),
};
}
match self.current_excel_serial() {
match self.current_excel_serial_with_timezone(self.tz) {
Some(serial) => CalcResult::Number(serial.floor()),
None => CalcResult::Error {
error: Error::ERROR,
@@ -989,14 +990,35 @@ impl Model {
}
pub(crate) fn fn_now(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
if args.len() > 1 {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Wrong number of arguments".to_string(),
};
}
match self.current_excel_serial() {
let tz = match args.first() {
Some(arg0) => {
// Parse timezone argument
let tz_str = match self.get_string(arg0, cell) {
Ok(s) => s,
Err(e) => return e,
};
let tz: Tz = match tz_str.parse() {
Ok(tz) => tz,
Err(_) => {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: format!("Invalid timezone: {}", &tz_str),
}
}
};
tz
}
None => self.tz,
};
match self.current_excel_serial_with_timezone(tz) {
Some(serial) => CalcResult::Number(serial),
None => CalcResult::Error {
error: Error::ERROR,

View File

@@ -1,9 +1,9 @@
use crate::cast::NumberOrArray;
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::constants::{EXCEL_PRECISION, LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::functions::math_util::{from_roman, to_roman_with_form};
use crate::number_format::to_precision;
use crate::number_format::{to_excel_precision, to_precision};
use crate::single_number_fn;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
@@ -984,7 +984,9 @@ impl Model {
};
}
let result = f64::floor(value / significance) * significance;
// Apply Excel precision to the ratio to handle floating-point rounding errors
let ratio = to_excel_precision(value / significance, EXCEL_PRECISION);
let result = f64::floor(ratio) * significance;
CalcResult::Number(result)
}
@@ -1022,7 +1024,7 @@ impl Model {
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 3 {
if !(1..=3).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
@@ -1063,7 +1065,7 @@ impl Model {
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 2 {
if !(1..=2).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
@@ -1093,7 +1095,7 @@ impl Model {
pub(crate) fn fn_floor_math(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if arg_count > 3 {
if !(1..=3).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
@@ -1121,10 +1123,14 @@ impl Model {
}
let significance = significance.abs();
if value < 0.0 && mode != 0.0 {
let result = f64::ceil(value / significance) * significance;
// Apply Excel precision to handle floating-point rounding errors
let ratio = to_excel_precision(value / significance, EXCEL_PRECISION);
let result = f64::ceil(ratio) * significance;
CalcResult::Number(result)
} else {
let result = f64::floor(value / significance) * significance;
// Apply Excel precision to handle floating-point rounding errors
let ratio = to_excel_precision(value / significance, EXCEL_PRECISION);
let result = f64::floor(ratio) * significance;
CalcResult::Number(result)
}
}
@@ -1135,7 +1141,7 @@ impl Model {
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 2 {
if !(1..=2).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
@@ -1154,7 +1160,9 @@ impl Model {
return CalcResult::Number(0.0);
}
let result = f64::floor(value / significance) * significance;
// Apply Excel precision to handle floating-point rounding errors
let ratio = to_excel_precision(value / significance, EXCEL_PRECISION);
let result = f64::floor(ratio) * significance;
CalcResult::Number(result)
}
@@ -1209,7 +1217,7 @@ impl Model {
}
pub(crate) fn fn_trunc(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() > 2 {
if !(1..=2).contains(&args.len()) {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {

View File

@@ -0,0 +1,230 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
type TwoMatricesResult = (i32, i32, Vec<Option<f64>>, Vec<Option<f64>>);
// Helper to check if two shapes are the same or compatible 1D shapes
fn is_same_shape_or_1d(rows1: i32, cols1: i32, rows2: i32, cols2: i32) -> bool {
(rows1 == rows2 && cols1 == cols2)
|| (rows1 == 1 && cols2 == 1 && cols1 == rows2)
|| (rows2 == 1 && cols1 == 1 && cols2 == rows1)
}
impl Model {
// SUMX2MY2(array_x, array_y) - Returns the sum of the difference of squares
pub(crate) fn fn_sumx2my2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let result = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(s) => return s,
};
let (_, _, values_left, values_right) = result;
let mut sum = 0.0;
for (x_opt, y_opt) in values_left.into_iter().zip(values_right.into_iter()) {
let x = x_opt.unwrap_or(0.0);
let y = y_opt.unwrap_or(0.0);
sum += x * x - y * y;
}
CalcResult::Number(sum)
}
// SUMX2PY2(array_x, array_y) - Returns the sum of the sum of squares
pub(crate) fn fn_sumx2py2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let result = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(s) => return s,
};
let (_rows, _cols, values_left, values_right) = result;
let mut sum = 0.0;
for (x_opt, y_opt) in values_left.into_iter().zip(values_right.into_iter()) {
let x = x_opt.unwrap_or(0.0);
let y = y_opt.unwrap_or(0.0);
sum += x * x + y * y;
}
CalcResult::Number(sum)
}
// SUMXMY2(array_x, array_y) - Returns the sum of squares of differences
pub(crate) fn fn_sumxmy2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let result = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(s) => return s,
};
let (_, _, values_left, values_right) = result;
let mut sum = 0.0;
for (x_opt, y_opt) in values_left.into_iter().zip(values_right.into_iter()) {
let x = x_opt.unwrap_or(0.0);
let y = y_opt.unwrap_or(0.0);
let diff = x - y;
sum += diff * diff;
}
CalcResult::Number(sum)
}
// Helper function to extract and validate two matrices (ranges or arrays) with compatible shapes.
// Returns (rows, cols, values_left, values_right) or an error.
pub(crate) fn fn_get_two_matrices(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> Result<TwoMatricesResult, CalcResult> {
if args.len() != 2 {
return Err(CalcResult::new_args_number_error(cell));
}
let x_range = self.evaluate_node_in_context(&args[0], cell);
let y_range = self.evaluate_node_in_context(&args[1], cell);
let result = match (x_range, y_range) {
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Range {
left: l2,
right: r2,
},
) => {
if l1.sheet != l2.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges must be of the same shape".to_string(),
));
}
let values_left = self.values_from_range(l1, r1)?;
let values_right = self.values_from_range(l2, r2)?;
(rows1, cols1, values_left, values_right)
}
(
CalcResult::Array(left),
CalcResult::Range {
left: l2,
right: r2,
},
) => {
let rows2 = r2.row - l2.row + 1;
let cols2 = r2.column - l2.column + 1;
let rows1 = left.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Array and range must be of the same shape".to_string(),
));
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
));
}
Ok(v) => v,
};
let values_right = self.values_from_range(l2, r2)?;
(rows2, cols2, values_left, values_right)
}
(
CalcResult::Range {
left: l1,
right: r1,
},
CalcResult::Array(right),
) => {
let rows1 = r1.row - l1.row + 1;
let cols1 = r1.column - l1.column + 1;
let rows2 = right.len() as i32;
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Range and array must be of the same shape".to_string(),
));
}
let values_left = self.values_from_range(l1, r1)?;
let values_right = match self.values_from_array(right) {
Err(error) => {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
));
}
Ok(v) => v,
};
(rows1, cols1, values_left, values_right)
}
(CalcResult::Array(left), CalcResult::Array(right)) => {
let rows1 = left.len() as i32;
let rows2 = right.len() as i32;
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Arrays must be of the same shape".to_string(),
));
}
let values_left = match self.values_from_array(left) {
Err(error) => {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
));
}
Ok(v) => v,
};
let values_right = match self.values_from_array(right) {
Err(error) => {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
));
}
Ok(v) => v,
};
(rows1, cols1, values_left, values_right)
}
_ => {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Both arguments must be ranges or arrays".to_string(),
));
}
};
Ok(result)
}
}

View File

@@ -19,6 +19,7 @@ mod lookup_and_reference;
mod macros;
mod math_util;
mod mathematical;
mod mathematical_sum;
mod statistical;
mod subtotal;
mod text;
@@ -76,6 +77,9 @@ pub enum Function {
Sum,
Sumif,
Sumifs,
Sumx2my2,
Sumx2py2,
Sumxmy2,
Tan,
Tanh,
Acot,
@@ -190,6 +194,92 @@ pub enum Function {
Minifs,
Geomean,
Avedev,
BetaDist,
BetaInv,
BinomDist,
BinomDistRange,
BinomInv,
ChisqDist,
ChisqDistRT,
ChisqInv,
ChisqInvRT,
ChisqTest,
ConfidenceNorm,
ConfidenceT,
CovarianceP,
CovarianceS,
Devsq,
ExponDist,
FDist,
FDistRT,
FInv,
FInvRT,
FTest,
Fisher,
FisherInv,
// Forecast,
Gamma,
GammaDist,
GammaInv,
GammaLn,
GammaLnPrecise,
Gauss,
Harmean,
HypGeomDist,
Kurt,
Large,
// Linest,
// Logest,
LogNormDist,
LogNormInv,
MaxA,
Median,
MinA,
// ModeMult,
// ModeSingl,
NegbinomDist,
NormDist,
NormInv,
NormSdist,
NormSInv,
Pearson,
// PercentileExc,
// PercentileInc,
// PercentrankExc,
// PercentrankInc,
// Permut,
// Permutationa,
Phi,
PoissonDist,
// Prob,
// QuartileExc,
// QuartileInc,
RankAvg,
RankEq,
Skew,
SkewP,
Small,
Standardize,
StDevP,
StDevS,
Stdeva,
Stdevpa,
TDist,
TDist2T,
TDistRT,
TInv,
TInv2T,
TTest,
// Trend,
// Trimmean,
VarP,
VarS,
VarpA,
VarA,
WeibullDist,
ZTest,
// Date and time
Date,
Datedif,
@@ -325,10 +415,16 @@ pub enum Function {
Dvar,
Dvarp,
Dstdevp,
Correl,
Rsq,
Intercept,
Slope,
Steyx,
}
impl Function {
pub fn into_iter() -> IntoIter<Function, 268> {
pub fn into_iter() -> IntoIter<Function, 345> {
[
Function::And,
Function::False,
@@ -405,6 +501,9 @@ impl Function {
Function::Sum,
Function::Sumif,
Function::Sumifs,
Function::Sumx2my2,
Function::Sumx2py2,
Function::Sumxmy2,
Function::Choose,
Function::Column,
Function::Columns,
@@ -453,6 +552,7 @@ impl Function {
Function::Type,
Function::Sheet,
Function::Average,
Function::Avedev,
Function::Averagea,
Function::Averageif,
Function::Averageifs,
@@ -598,6 +698,79 @@ impl Function {
Function::Dvar,
Function::Dvarp,
Function::Dstdevp,
Function::BetaDist,
Function::BetaInv,
Function::BinomDist,
Function::BinomDistRange,
Function::BinomInv,
Function::ChisqDist,
Function::ChisqDistRT,
Function::ChisqInv,
Function::ChisqInvRT,
Function::ChisqTest,
Function::ConfidenceNorm,
Function::ConfidenceT,
Function::CovarianceP,
Function::CovarianceS,
Function::Devsq,
Function::ExponDist,
Function::FDist,
Function::FDistRT,
Function::FInv,
Function::FInvRT,
Function::FTest,
Function::Fisher,
Function::FisherInv,
Function::Gamma,
Function::GammaDist,
Function::GammaInv,
Function::GammaLn,
Function::GammaLnPrecise,
Function::HypGeomDist,
Function::LogNormDist,
Function::LogNormInv,
Function::NegbinomDist,
Function::NormDist,
Function::NormInv,
Function::NormSdist,
Function::NormSInv,
Function::Pearson,
Function::Phi,
Function::PoissonDist,
Function::Standardize,
Function::StDevP,
Function::StDevS,
Function::Stdeva,
Function::Stdevpa,
Function::TDist,
Function::TDist2T,
Function::TDistRT,
Function::TInv,
Function::TInv2T,
Function::TTest,
Function::VarP,
Function::VarS,
Function::VarpA,
Function::VarA,
Function::WeibullDist,
Function::ZTest,
Function::Correl,
Function::Rsq,
Function::Intercept,
Function::Slope,
Function::Steyx,
Function::Large,
Function::Median,
Function::Small,
Function::RankAvg,
Function::RankEq,
Function::Skew,
Function::SkewP,
Function::Harmean,
Function::Gauss,
Function::Kurt,
Function::MaxA,
Function::MinA,
]
.into_iter()
}
@@ -659,6 +832,70 @@ impl Function {
Function::Sec => "_xlfn.SEC".to_string(),
Function::Sech => "_xlfn.SECH".to_string(),
Function::Acot => "_xlfn.ACOT".to_string(),
Function::GammaLnPrecise => "_xlfn.GAMMALN.PRECISE".to_string(),
Function::Gamma => "_xlfn.GAMMA".to_string(),
Function::GammaInv => "_xlfn.GAMMA.INV".to_string(),
Function::GammaLn => "_xlfn.GAMMALN".to_string(),
Function::BetaDist => "_xlfn.BETA.DIST".to_string(),
Function::BetaInv => "_xlfn.BETA.INV".to_string(),
Function::BinomDist => "_xlfn.BINOM.DIST".to_string(),
Function::BinomDistRange => "_xlfn.BINOM.DIST.RANGE".to_string(),
Function::BinomInv => "_xlfn.BINOM.INV".to_string(),
Function::NegbinomDist => "_xlfn.NEGBINOM.DIST".to_string(),
Function::ChisqDist => "_xlfn.CHISQ.DIST".to_string(),
Function::ChisqDistRT => "_xlfn.CHISQ.DIST.RT".to_string(),
Function::ChisqInv => "_xlfn.CHISQ.INV".to_string(),
Function::ChisqInvRT => "_xlfn.CHISQ.INV.RT".to_string(),
Function::ChisqTest => "_xlfn.CHISQ.TEST".to_string(),
Function::ConfidenceNorm => "_xlfn.CONFIDENCE.NORM".to_string(),
Function::ConfidenceT => "_xlfn.CONFIDENCE.T".to_string(),
Function::CovarianceP => "_xlfn.COVARIANCE.P".to_string(),
Function::CovarianceS => "_xlfn.COVARIANCE.S".to_string(),
Function::ExponDist => "_xlfn.EXPON.DIST".to_string(),
Function::FDist => "_xlfn.F.DIST".to_string(),
Function::FDistRT => "_xlfn.F.DIST.RT".to_string(),
Function::FInv => "_xlfn.F.INV".to_string(),
Function::FInvRT => "_xlfn.F.INV.RT".to_string(),
Function::FTest => "_xlfn.F.TEST".to_string(),
Function::HypGeomDist => "_xlfn.HYPGEOM.DIST".to_string(),
Function::LogNormDist => "_xlfn.LOGNORM.DIST".to_string(),
Function::LogNormInv => "_xlfn.LOGNORM.INV".to_string(),
Function::NormDist => "_xlfn.NORM.DIST".to_string(),
Function::NormInv => "_xlfn.NORM.INV".to_string(),
Function::NormSdist => "_xlfn.NORM.S.DIST".to_string(),
Function::NormSInv => "_xlfn.NORM.S.INV".to_string(),
Function::Phi => "_xlfn.PHI".to_string(),
Function::PoissonDist => "_xlfn.POISSON.DIST".to_string(),
Function::StDevP => "_xlfn.STDEV.P".to_string(),
Function::StDevS => "_xlfn.STDEV.S".to_string(),
Function::TDist => "_xlfn.T.DIST".to_string(),
Function::TDist2T => "_xlfn.T.DIST.2T".to_string(),
Function::TDistRT => "_xlfn.T.DIST.RT".to_string(),
Function::TInv => "_xlfn.T.INV".to_string(),
Function::TInv2T => "_xlfn.T.INV.2T".to_string(),
Function::TTest => "_xlfn.T.TEST".to_string(),
Function::VarP => "_xlfn.VAR.P".to_string(),
Function::VarS => "_xlfn.VAR.S".to_string(),
Function::WeibullDist => "_xlfn.WEIBULL.DIST".to_string(),
Function::ZTest => "_xlfn.Z.TEST".to_string(),
Function::SkewP => "_xlfn.SKEW.P".to_string(),
Function::RankAvg => "_xlfn.RANK.AVG".to_string(),
Function::RankEq => "_xlfn.RANK.EQ".to_string(),
_ => self.to_string(),
}
@@ -811,6 +1048,7 @@ impl Function {
"AVERAGE" => Some(Function::Average),
"AVERAGEA" => Some(Function::Averagea),
"AVEDEV" => Some(Function::Avedev),
"AVERAGEIF" => Some(Function::Averageif),
"AVERAGEIFS" => Some(Function::Averageifs),
"COUNT" => Some(Function::Count),
@@ -957,6 +1195,85 @@ impl Function {
"DVARP" => Some(Function::Dvarp),
"DSTDEVP" => Some(Function::Dstdevp),
"BETA.DIST" | "_XLFN.BETA.DIST" => Some(Function::BetaDist),
"BETA.INV" | "_XLFN.BETA.INV" => Some(Function::BetaInv),
"BINOM.DIST" | "_XLFN.BINOM.DIST" => Some(Function::BinomDist),
"BINOM.DIST.RANGE" | "_XLFN.BINOM.DIST.RANGE" => Some(Function::BinomDistRange),
"BINOM.INV" | "_XLFN.BINOM.INV" => Some(Function::BinomInv),
"CHISQ.DIST" | "_XLFN.CHISQ.DIST" => Some(Function::ChisqDist),
"CHISQ.DIST.RT" | "_XLFN.CHISQ.DIST.RT" => Some(Function::ChisqDistRT),
"CHISQ.INV" | "_XLFN.CHISQ.INV" => Some(Function::ChisqInv),
"CHISQ.INV.RT" | "_XLFN.CHISQ.INV.RT" => Some(Function::ChisqInvRT),
"CHISQ.TEST" | "_XLFN.CHISQ.TEST" => Some(Function::ChisqTest),
"CONFIDENCE.NORM" | "_XLFN.CONFIDENCE.NORM" => Some(Function::ConfidenceNorm),
"CONFIDENCE.T" | "_XLFN.CONFIDENCE.T" => Some(Function::ConfidenceT),
"COVARIANCE.P" | "_XLFN.COVARIANCE.P" => Some(Function::CovarianceP),
"COVARIANCE.S" | "_XLFN.COVARIANCE.S" => Some(Function::CovarianceS),
"DEVSQ" => Some(Function::Devsq),
"EXPON.DIST" | "_XLFN.EXPON.DIST" => Some(Function::ExponDist),
"F.DIST" | "_XLFN.F.DIST" => Some(Function::FDist),
"F.DIST.RT" | "_XLFN.F.DIST.RT" => Some(Function::FDistRT),
"F.INV" | "_XLFN.F.INV" => Some(Function::FInv),
"F.INV.RT" | "_XLFN.F.INV.RT" => Some(Function::FInvRT),
"F.TEST" | "_XLFN.F.TEST" => Some(Function::FTest),
"FISHER" => Some(Function::Fisher),
"FISHERINV" => Some(Function::FisherInv),
"GAMMA" | "_XLFN.GAMMA" => Some(Function::Gamma),
"GAMMA.DIST" | "_XLFN.GAMMA.DIST" => Some(Function::GammaDist),
"GAMMA.INV" | "_XLFN.GAMMA.INV" => Some(Function::GammaInv),
"GAMMALN" | "_XLFN.GAMMALN" => Some(Function::GammaLn),
"GAMMALN.PRECISE" | "_XLFN.GAMMALN.PRECISE" => Some(Function::GammaLnPrecise),
"HYPGEOM.DIST" | "_XLFN.HYPGEOM.DIST" => Some(Function::HypGeomDist),
"LOGNORM.DIST" | "_XLFN.LOGNORM.DIST" => Some(Function::LogNormDist),
"LOGNORM.INV" | "_XLFN.LOGNORM.INV" => Some(Function::LogNormInv),
"NEGBINOM.DIST" | "_XLFN.NEGBINOM.DIST" => Some(Function::NegbinomDist),
"NORM.DIST" | "_XLFN.NORM.DIST" => Some(Function::NormDist),
"NORM.INV" | "_XLFN.NORM.INV" => Some(Function::NormInv),
"NORM.S.DIST" | "_XLFN.NORM.S.DIST" => Some(Function::NormSdist),
"NORM.S.INV" | "_XLFN.NORM.S.INV" => Some(Function::NormSInv),
"PEARSON" => Some(Function::Pearson),
"PHI" | "_XLFN.PHI" => Some(Function::Phi),
"POISSON.DIST" | "_XLFN.POISSON.DIST" => Some(Function::PoissonDist),
"STANDARDIZE" => Some(Function::Standardize),
"STDEV.P" | "_XLFN.STDEV.P" => Some(Function::StDevP),
"STDEV.S" | "_XLFN.STDEV.S" => Some(Function::StDevS),
"STDEVA" => Some(Function::Stdeva),
"STDEVPA" => Some(Function::Stdevpa),
"T.DIST" | "_XLFN.T.DIST" => Some(Function::TDist),
"T.DIST.2T" | "_XLFN.T.DIST.2T" => Some(Function::TDist2T),
"T.DIST.RT" | "_XLFN.T.DIST.RT" => Some(Function::TDistRT),
"T.INV" | "_XLFN.T.INV" => Some(Function::TInv),
"T.INV.2T" | "_XLFN.T.INV.2T" => Some(Function::TInv2T),
"T.TEST" | "_XLFN.T.TEST" => Some(Function::TTest),
"VAR.P" | "_XLFN.VAR.P" => Some(Function::VarP),
"VAR.S" | "_XLFN.VAR.S" => Some(Function::VarS),
"VARPA" => Some(Function::VarpA),
"VARA" => Some(Function::VarA),
"WEIBULL.DIST" | "_XLFN.WEIBULL.DIST" => Some(Function::WeibullDist),
"Z.TEST" | "_XLFN.Z.TEST" => Some(Function::ZTest),
"SUMX2MY2" => Some(Function::Sumx2my2),
"SUMX2PY2" => Some(Function::Sumx2py2),
"SUMXMY2" => Some(Function::Sumxmy2),
"CORREL" => Some(Function::Correl),
"RSQ" => Some(Function::Rsq),
"INTERCEPT" => Some(Function::Intercept),
"SLOPE" => Some(Function::Slope),
"STEYX" => Some(Function::Steyx),
"SKEW.P" | "_XLFN.SKEW.P" => Some(Function::SkewP),
"SKEW" => Some(Function::Skew),
"KURT" => Some(Function::Kurt),
"HARMEAN" => Some(Function::Harmean),
"MEDIAN" => Some(Function::Median),
"GAUSS" => Some(Function::Gauss),
"MINA" => Some(Function::MinA),
"MAXA" => Some(Function::MaxA),
"SMALL" => Some(Function::Small),
"LARGE" => Some(Function::Large),
"RANK.EQ" | "_XLFN.RANK.EQ" => Some(Function::RankEq),
"RANK.AVG" | "_XLFN.RANK.AVG" => Some(Function::RankAvg),
_ => None,
}
}
@@ -1065,6 +1382,7 @@ impl fmt::Display for Function {
Function::Sheet => write!(f, "SHEET"),
Function::Average => write!(f, "AVERAGE"),
Function::Averagea => write!(f, "AVERAGEA"),
Function::Avedev => write!(f, "AVEDEV"),
Function::Averageif => write!(f, "AVERAGEIF"),
Function::Averageifs => write!(f, "AVERAGEIFS"),
Function::Count => write!(f, "COUNT"),
@@ -1217,7 +1535,6 @@ impl fmt::Display for Function {
Function::Combin => write!(f, "COMBIN"),
Function::Combina => write!(f, "COMBINA"),
Function::Sumsq => write!(f, "SUMSQ"),
Function::N => write!(f, "N"),
Function::Cell => write!(f, "CELL"),
Function::Info => write!(f, "INFO"),
@@ -1234,6 +1551,83 @@ impl fmt::Display for Function {
Function::Dvar => write!(f, "DVAR"),
Function::Dvarp => write!(f, "DVARP"),
Function::Dstdevp => write!(f, "DSTDEVP"),
Function::BetaDist => write!(f, "BETA.DIST"),
Function::BetaInv => write!(f, "BETA.INV"),
Function::BinomDist => write!(f, "BINOM.DIST"),
Function::BinomDistRange => write!(f, "BINOM.DIST.RANGE"),
Function::BinomInv => write!(f, "BINOM.INV"),
Function::ChisqDist => write!(f, "CHISQ.DIST"),
Function::ChisqDistRT => write!(f, "CHISQ.DIST.RT"),
Function::ChisqInv => write!(f, "CHISQ.INV"),
Function::ChisqInvRT => write!(f, "CHISQ.INV.RT"),
Function::ChisqTest => write!(f, "CHISQ.TEST"),
Function::ConfidenceNorm => write!(f, "CONFIDENCE.NORM"),
Function::ConfidenceT => write!(f, "CONFIDENCE.T"),
Function::CovarianceP => write!(f, "COVARIANCE.P"),
Function::CovarianceS => write!(f, "COVARIANCE.S"),
Function::Devsq => write!(f, "DEVSQ"),
Function::ExponDist => write!(f, "EXPON.DIST"),
Function::FDist => write!(f, "F.DIST"),
Function::FDistRT => write!(f, "F.DIST.RT"),
Function::FInv => write!(f, "F.INV"),
Function::FInvRT => write!(f, "F.INV.RT"),
Function::Fisher => write!(f, "FISHER"),
Function::FisherInv => write!(f, "FISHERINV"),
Function::FTest => write!(f, "F.TEST"),
Function::Gamma => write!(f, "GAMMA"),
Function::GammaDist => write!(f, "GAMMA.DIST"),
Function::GammaInv => write!(f, "GAMMA.INV"),
Function::GammaLn => write!(f, "GAMMALN"),
Function::GammaLnPrecise => write!(f, "GAMMALN.PRECISE"),
Function::HypGeomDist => write!(f, "HYPGEOM.DIST"),
Function::LogNormDist => write!(f, "LOGNORM.DIST"),
Function::LogNormInv => write!(f, "LOGNORM.INV"),
Function::NegbinomDist => write!(f, "NEGBINOM.DIST"),
Function::NormDist => write!(f, "NORM.DIST"),
Function::NormInv => write!(f, "NORM.INV"),
Function::NormSdist => write!(f, "NORM.S.DIST"),
Function::NormSInv => write!(f, "NORM.S.INV"),
Function::Pearson => write!(f, "PEARSON"),
Function::Phi => write!(f, "PHI"),
Function::PoissonDist => write!(f, "POISSON.DIST"),
Function::Standardize => write!(f, "STANDARDIZE"),
Function::StDevP => write!(f, "STDEV.P"),
Function::StDevS => write!(f, "STDEV.S"),
Function::Stdeva => write!(f, "STDEVA"),
Function::Stdevpa => write!(f, "STDEVPA"),
Function::TDist => write!(f, "T.DIST"),
Function::TDist2T => write!(f, "T.DIST.2T"),
Function::TDistRT => write!(f, "T.DIST.RT"),
Function::TInv => write!(f, "T.INV"),
Function::TInv2T => write!(f, "T.INV.2T"),
Function::TTest => write!(f, "T.TEST"),
Function::VarP => write!(f, "VAR.P"),
Function::VarS => write!(f, "VAR.S"),
Function::VarpA => write!(f, "VARPA"),
Function::VarA => write!(f, "VARA"),
Function::WeibullDist => write!(f, "WEIBULL.DIST"),
Function::ZTest => write!(f, "Z.TEST"),
Function::Sumx2my2 => write!(f, "SUMX2MY2"),
Function::Sumx2py2 => write!(f, "SUMX2PY2"),
Function::Sumxmy2 => write!(f, "SUMXMY2"),
Function::Correl => write!(f, "CORREL"),
Function::Rsq => write!(f, "RSQ"),
Function::Intercept => write!(f, "INTERCEPT"),
Function::Slope => write!(f, "SLOPE"),
Function::Steyx => write!(f, "STEYX"),
// new ones
Function::Gauss => write!(f, "GAUSS"),
Function::Harmean => write!(f, "HARMEAN"),
Function::Kurt => write!(f, "KURT"),
Function::Large => write!(f, "LARGE"),
Function::MaxA => write!(f, "MAXA"),
Function::Median => write!(f, "MEDIAN"),
Function::MinA => write!(f, "MINA"),
Function::RankAvg => write!(f, "RANK.AVG"),
Function::RankEq => write!(f, "RANK.EQ"),
Function::Skew => write!(f, "SKEW"),
Function::SkewP => write!(f, "SKEW.P"),
Function::Small => write!(f, "SMALL"),
}
}
}
@@ -1354,6 +1748,7 @@ impl Model {
Function::Sheet => self.fn_sheet(args, cell),
Function::Average => self.fn_average(args, cell),
Function::Averagea => self.fn_averagea(args, cell),
Function::Avedev => self.fn_avedev(args, cell),
Function::Averageif => self.fn_averageif(args, cell),
Function::Averageifs => self.fn_averageifs(args, cell),
Function::Count => self.fn_count(args, cell),
@@ -1530,6 +1925,82 @@ impl Model {
Function::Dvar => self.fn_dvar(args, cell),
Function::Dvarp => self.fn_dvarp(args, cell),
Function::Dstdevp => self.fn_dstdevp(args, cell),
Function::BetaDist => self.fn_beta_dist(args, cell),
Function::BetaInv => self.fn_beta_inv(args, cell),
Function::BinomDist => self.fn_binom_dist(args, cell),
Function::BinomDistRange => self.fn_binom_dist_range(args, cell),
Function::BinomInv => self.fn_binom_inv(args, cell),
Function::ChisqDist => self.fn_chisq_dist(args, cell),
Function::ChisqDistRT => self.fn_chisq_dist_rt(args, cell),
Function::ChisqInv => self.fn_chisq_inv(args, cell),
Function::ChisqInvRT => self.fn_chisq_inv_rt(args, cell),
Function::ChisqTest => self.fn_chisq_test(args, cell),
Function::ConfidenceNorm => self.fn_confidence_norm(args, cell),
Function::ConfidenceT => self.fn_confidence_t(args, cell),
Function::CovarianceP => self.fn_covariance_p(args, cell),
Function::CovarianceS => self.fn_covariance_s(args, cell),
Function::Devsq => self.fn_devsq(args, cell),
Function::ExponDist => self.fn_expon_dist(args, cell),
Function::FDist => self.fn_f_dist(args, cell),
Function::FDistRT => self.fn_f_dist_rt(args, cell),
Function::FInv => self.fn_f_inv(args, cell),
Function::FInvRT => self.fn_f_inv_rt(args, cell),
Function::Fisher => self.fn_fisher(args, cell),
Function::FisherInv => self.fn_fisher_inv(args, cell),
Function::FTest => self.fn_f_test(args, cell),
Function::Gamma => self.fn_gamma(args, cell),
Function::GammaDist => self.fn_gamma_dist(args, cell),
Function::GammaInv => self.fn_gamma_inv(args, cell),
Function::GammaLn => self.fn_gamma_ln(args, cell),
Function::GammaLnPrecise => self.fn_gamma_ln_precise(args, cell),
Function::HypGeomDist => self.fn_hyp_geom_dist(args, cell),
Function::LogNormDist => self.fn_log_norm_dist(args, cell),
Function::LogNormInv => self.fn_log_norm_inv(args, cell),
Function::NegbinomDist => self.fn_negbinom_dist(args, cell),
Function::NormDist => self.fn_norm_dist(args, cell),
Function::NormInv => self.fn_norm_inv(args, cell),
Function::NormSdist => self.fn_norm_s_dist(args, cell),
Function::NormSInv => self.fn_norm_s_inv(args, cell),
Function::Pearson => self.fn_pearson(args, cell),
Function::Phi => self.fn_phi(args, cell),
Function::PoissonDist => self.fn_poisson_dist(args, cell),
Function::Standardize => self.fn_standardize(args, cell),
Function::StDevP => self.fn_stdev_p(args, cell),
Function::StDevS => self.fn_stdev_s(args, cell),
Function::Stdeva => self.fn_stdeva(args, cell),
Function::Stdevpa => self.fn_stdevpa(args, cell),
Function::TDist => self.fn_t_dist(args, cell),
Function::TDist2T => self.fn_t_dist_2t(args, cell),
Function::TDistRT => self.fn_t_dist_rt(args, cell),
Function::TInv => self.fn_t_inv(args, cell),
Function::TInv2T => self.fn_t_inv_2t(args, cell),
Function::TTest => self.fn_t_test(args, cell),
Function::VarP => self.fn_var_p(args, cell),
Function::VarS => self.fn_var_s(args, cell),
Function::VarpA => self.fn_varpa(args, cell),
Function::VarA => self.fn_vara(args, cell),
Function::WeibullDist => self.fn_weibull_dist(args, cell),
Function::ZTest => self.fn_z_test(args, cell),
Function::Sumx2my2 => self.fn_sumx2my2(args, cell),
Function::Sumx2py2 => self.fn_sumx2py2(args, cell),
Function::Sumxmy2 => self.fn_sumxmy2(args, cell),
Function::Correl => self.fn_correl(args, cell),
Function::Rsq => self.fn_rsq(args, cell),
Function::Intercept => self.fn_intercept(args, cell),
Function::Slope => self.fn_slope(args, cell),
Function::Steyx => self.fn_steyx(args, cell),
Function::Gauss => self.fn_gauss(args, cell),
Function::Harmean => self.fn_harmean(args, cell),
Function::Kurt => self.fn_kurt(args, cell),
Function::Large => self.fn_large(args, cell),
Function::MaxA => self.fn_maxa(args, cell),
Function::Median => self.fn_median(args, cell),
Function::MinA => self.fn_mina(args, cell),
Function::RankAvg => self.fn_rank_avg(args, cell),
Function::RankEq => self.fn_rank_eq(args, cell),
Function::Skew => self.fn_skew(args, cell),
Function::SkewP => self.fn_skew_p(args, cell),
Function::Small => self.fn_small(args, cell),
}
}
}

View File

@@ -1,733 +0,0 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::{CalcResult, Range},
expressions::parser::Node,
expressions::token::Error,
model::Model,
};
use super::util::build_criteria;
impl Model {
pub(crate) fn fn_average(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut count = 0.0;
let mut sum = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
count += 1.0;
sum += value;
}
CalcResult::Boolean(b) => {
if let Node::ReferenceKind { .. } = arg {
} else {
sum += if b { 1.0 } else { 0.0 };
count += 1.0;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
count += 1.0;
sum += value;
}
error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Unexpected Range".to_string(),
);
}
_ => {}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
} else if let Ok(t) = s.parse::<f64>() {
sum += t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
_ => {
// Ignore everything else
}
};
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Division by Zero".to_string(),
};
}
CalcResult::Number(sum / count)
}
pub(crate) fn fn_averagea(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut count = 0.0;
let mut sum = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::String(_) => count += 1.0,
CalcResult::Number(value) => {
count += 1.0;
sum += value;
}
CalcResult::Boolean(b) => {
if b {
sum += 1.0;
}
count += 1.0;
}
error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Unexpected Range".to_string(),
);
}
CalcResult::EmptyCell | CalcResult::EmptyArg => {}
CalcResult::Array(_) => {
return CalcResult::Error {
error: Error::NIMPL,
origin: cell,
message: "Arrays not supported yet".to_string(),
}
}
}
}
}
}
CalcResult::Number(value) => {
count += 1.0;
sum += value;
}
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
count += 1.0;
} else if let Ok(t) = s.parse::<f64>() {
sum += t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
CalcResult::Boolean(b) => {
count += 1.0;
if b {
sum += 1.0;
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::EmptyCell | CalcResult::EmptyArg => {}
CalcResult::Array(_) => {
return CalcResult::Error {
error: Error::NIMPL,
origin: cell,
message: "Arrays not supported yet".to_string(),
}
}
};
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Division by Zero".to_string(),
};
}
CalcResult::Number(sum / count)
}
pub(crate) fn fn_count(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(_) => {
result += 1.0;
}
CalcResult::Boolean(_) => {
if !matches!(arg, Node::ReferenceKind { .. }) {
result += 1.0;
}
}
CalcResult::String(s) => {
if !matches!(arg, Node::ReferenceKind { .. }) && s.parse::<f64>().is_ok() {
result += 1.0;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
if let CalcResult::Number(_) = self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
result += 1.0;
}
}
}
}
_ => {
// Ignore everything else
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_counta(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::EmptyCell | CalcResult::EmptyArg => {}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::EmptyCell | CalcResult::EmptyArg => {}
_ => {
result += 1.0;
}
}
}
}
}
_ => {
result += 1.0;
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_countblank(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// COUNTBLANK requires only one argument
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::EmptyCell | CalcResult::EmptyArg => result += 1.0,
CalcResult::String(s) => {
if s.is_empty() {
result += 1.0
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::EmptyCell | CalcResult::EmptyArg => result += 1.0,
CalcResult::String(s) => {
if s.is_empty() {
result += 1.0
}
}
_ => {}
}
}
}
}
_ => {}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[1].clone()];
self.fn_countifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// AVERAGEIF(criteria_range, criteria, [average_range])
/// if average_rage is missing then criteria_range will be used
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 2 || !args_count.is_multiple_of(2) {
return CalcResult::new_args_number_error(cell);
}
let case_count = args_count / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 0..case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
if result.is_error() {
return result;
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let mut total = 0.0;
let first_range = &ranges[0];
let left_row = first_range.left.row;
let left_column = first_range.left.column;
let right_row = first_range.right.row;
let right_column = first_range.right.column;
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
Ok(s) => s.dimension(),
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
)
}
};
let max_row = dimension.max_row;
let max_column = dimension.max_column;
let open_row = left_row == 1 && right_row == LAST_ROW;
let open_column = left_column == 1 && right_column == LAST_COLUMN;
for row in left_row..right_row + 1 {
if open_row && row > max_row {
// If the row is larger than the max row in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
}
break;
}
for column in left_column..right_column + 1 {
if open_column && column > max_column {
// If the column is larger than the max column in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += (LAST_COLUMN - max_column) as f64;
}
break;
}
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - first_range.left.row,
column: range.left.column + column - first_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
total += 1.0;
}
}
}
CalcResult::Number(total)
}
pub(crate) fn apply_ifs<F>(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
mut apply: F,
) -> Result<(), CalcResult>
where
F: FnMut(f64),
{
let args_count = args.len();
if args_count < 3 || args_count.is_multiple_of(2) {
return Err(CalcResult::new_args_number_error(cell));
}
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
if arg_0.is_error() {
return Err(arg_0);
}
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
Range { left, right }
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
};
let case_count = (args_count - 1) / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 1..=case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
// NB: criterion might be an error. That's ok
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
if result.is_error() {
return Err(result);
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let left_row = sum_range.left.row;
let left_column = sum_range.left.column;
let mut right_row = sum_range.right.row;
let mut right_column = sum_range.right.column;
if left_row == 1 && right_row == LAST_ROW {
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
if left_column == 1 && right_column == LAST_COLUMN {
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
for row in left_row..right_row + 1 {
for column in left_column..right_column + 1 {
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - sum_range.left.row,
column: range.left.column + column - sum_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
let v = self.evaluate_cell(CellReferenceIndex {
sheet: sum_range.left.sheet,
row,
column,
});
match v {
CalcResult::Number(n) => apply(n),
CalcResult::Error { .. } => return Err(v),
_ => {}
}
}
}
}
Ok(())
}
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let mut count = 0.0;
let average = |value: f64| {
total += value;
count += 1.0;
};
if let Err(e) = self.apply_ifs(args, cell, average) {
return e;
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "division by 0".to_string(),
};
}
CalcResult::Number(total / count)
}
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut min = f64::INFINITY;
let apply_min = |value: f64| min = value.min(min);
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
return e;
}
if min.is_infinite() {
min = 0.0;
}
CalcResult::Number(min)
}
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut max = -f64::INFINITY;
let apply_max = |value: f64| max = value.max(max);
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
return e;
}
if max.is_infinite() {
max = 0.0;
}
CalcResult::Number(max)
}
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut count = 0.0;
let mut product = 1.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
CalcResult::Boolean(b) => {
if let Node::ReferenceKind { .. } = arg {
} else {
product *= if b { 1.0 } else { 0.0 };
count += 1.0;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Unexpected Range".to_string(),
);
}
_ => {}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
} else if let Ok(t) = s.parse::<f64>() {
product *= t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
_ => {
// Ignore everything else
}
};
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Division by Zero".to_string(),
};
}
CalcResult::Number(product.powf(1.0 / count))
}
}

View File

@@ -0,0 +1,213 @@
use statrs::distribution::{Beta, Continuous, ContinuousCDF};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// BETA.DIST(x, alpha, beta, cumulative, [A], [B])
pub(crate) fn fn_beta_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if !(4..=6).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_param = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// cumulative argument: interpret like Excel
let cumulative = match self.evaluate_node_in_context(&args[3], cell) {
CalcResult::Boolean(b) => b,
CalcResult::Number(n) => n != 0.0,
CalcResult::String(s) => {
let up = s.to_ascii_uppercase();
if up == "TRUE" {
true
} else if up == "FALSE" {
false
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "cumulative must be TRUE/FALSE or numeric".to_string(),
};
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Invalid cumulative argument".to_string(),
}
}
};
// Optional A, B
let a = if arg_count >= 5 {
match self.get_number_no_bools(&args[4], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
0.0
};
let b = if arg_count >= 6 {
match self.get_number_no_bools(&args[5], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
1.0
};
// Excel: alpha <= 0 or beta <= 0 → #NUM!
if alpha <= 0.0 || beta_param <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in BETA.DIST".to_string(),
);
}
// Excel: if x < A, x > B, or A = B → #NUM!
if b == a || x < a || x > b {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be between A and B and A < B in BETA.DIST".to_string(),
);
}
// Transform to standard Beta(0,1)
let width = b - a;
let t = (x - a) / width;
let dist = match Beta::new(alpha, beta_param) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Beta distribution".to_string(),
)
}
};
let result = if cumulative {
dist.cdf(t)
} else {
// general-interval beta pdf: f_X(x) = f_T(t) / (B - A), t=(x-A)/(B-A)
dist.pdf(t) / width
};
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BETA.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_beta_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if !(3..=5).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_param = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let a = if arg_count >= 4 {
match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
0.0
};
let b = if arg_count >= 5 {
match self.get_number_no_bools(&args[4], cell) {
Ok(f) => f,
Err(e) => return e,
}
} else {
1.0
};
if alpha <= 0.0 || beta_param <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in BETA.INV".to_string(),
);
}
// probability <= 0 or probability > 1 → #NUM!
if p <= 0.0 || p > 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in (0,1] in BETA.INV".to_string(),
);
}
if b <= a {
return CalcResult::new_error(
Error::NUM,
cell,
"A must be < B in BETA.INV".to_string(),
);
}
let dist = match Beta::new(alpha, beta_param) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Beta distribution".to_string(),
)
}
};
let t = dist.inverse_cdf(p);
if t.is_nan() || t.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BETA.INV".to_string(),
);
}
// Map back from [0,1] to [A,B]
let x = a + t * (b - a);
CalcResult::Number(x)
}
}

View File

@@ -0,0 +1,311 @@
use statrs::distribution::{Binomial, Discrete, DiscreteCDF};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_binom_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
// number_s
let number_s = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// trials
let trials = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// cumulative (logical)
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Domain checks
if trials < 0.0
|| number_s < 0.0
|| number_s > trials
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.DIST".to_string(),
);
}
// Limit to u64
if trials > u64::MAX as f64 {
return CalcResult::new_error(
Error::NUM,
cell,
"Number of trials too large".to_string(),
);
}
let n = trials as u64;
let k = number_s as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if prob.is_nan() || prob.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BINOM.DIST".to_string(),
);
}
CalcResult::Number(prob)
}
pub(crate) fn fn_binom_dist_range(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() < 3 || args.len() > 4 {
return CalcResult::new_args_number_error(cell);
}
// trials
let trials = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
// number_s (lower)
let number_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_s2 (upper, optional)
let number_s2 = if args.len() == 4 {
match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
}
} else {
number_s
};
if trials < 0.0
|| number_s < 0.0
|| number_s2 < 0.0
|| number_s > number_s2
|| number_s2 > trials
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.DIST.RANGE".to_string(),
);
}
if trials > u64::MAX as f64 {
return CalcResult::new_error(
Error::NUM,
cell,
"Number of trials too large".to_string(),
);
}
let n = trials as u64;
let lower = number_s as u64;
let upper = number_s2 as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
let prob = if lower == 0 {
dist.cdf(upper)
} else {
let cdf_upper = dist.cdf(upper);
let cdf_below_lower = dist.cdf(lower - 1);
cdf_upper - cdf_below_lower
};
if prob.is_nan() || prob.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for BINOM.DIST.RANGE".to_string(),
);
}
CalcResult::Number(prob)
}
pub(crate) fn fn_binom_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
// trials
let trials = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability_s
let p = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
// alpha
let alpha = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if trials < 0.0
|| trials > u64::MAX as f64
|| p.is_nan()
|| !(0.0..=1.0).contains(&p)
|| alpha.is_nan()
|| !(0.0..=1.0).contains(&alpha)
{
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for BINOM.INV".to_string(),
);
}
let n = trials as u64;
let dist = match Binomial::new(p, n) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for binomial distribution".to_string(),
)
}
};
// DiscreteCDF::inverse_cdf returns u64 for binomial
let k = statrs::distribution::DiscreteCDF::inverse_cdf(&dist, alpha);
CalcResult::Number(k as f64)
}
pub(crate) fn fn_negbinom_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
use statrs::distribution::{Discrete, DiscreteCDF, NegativeBinomial};
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let number_f = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let number_s = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let probability_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if number_f < 0.0 || number_s < 1.0 || !(0.0..=1.0).contains(&probability_s) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
// Guard against absurdly large failures that won't fit in u64
if number_f > (u64::MAX as f64) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
let dist = match NegativeBinomial::new(number_s, probability_s) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
}
}
};
let f_u = number_f as u64;
let result = if cumulative {
dist.cdf(f_u)
} else {
dist.pmf(f_u)
};
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,397 @@
use statrs::distribution::{ChiSquared, Continuous, ContinuousCDF};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// CHISQ.DIST(x, deg_freedom, cumulative)
pub(crate) fn fn_chisq_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in CHISQ.DIST".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.DIST".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.DIST".to_string(),
);
}
CalcResult::Number(result)
}
// CHISQ.DIST.RT(x, deg_freedom)
pub(crate) fn fn_chisq_dist_rt(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df_raw = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = df_raw.trunc();
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in CHISQ.DIST.RT".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.DIST.RT".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
// Right-tail probability: P(X > x).
// Use sf(x) directly for better numerical properties than 1 - cdf(x).
let result = dist.sf(x);
if result.is_nan() || result.is_infinite() || result < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.DIST.RT".to_string(),
);
}
CalcResult::Number(result)
}
// CHISQ.INV(probability, deg_freedom)
pub(crate) fn fn_chisq_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// if probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in CHISQ.INV".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.INV".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.INV".to_string(),
);
}
CalcResult::Number(x)
}
// CHISQ.INV.RT(probability, deg_freedom)
pub(crate) fn fn_chisq_inv_rt(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df_raw = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = df_raw.trunc();
// if probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in CHISQ.INV.RT".to_string(),
);
}
if df < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in CHISQ.INV.RT".to_string(),
);
}
let dist = match ChiSquared::new(df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Chi-squared distribution".to_string(),
)
}
};
// Right-tail inverse: p = P(X > x) = SF(x) = 1 - CDF(x)
// So x = inverse_cdf(1 - p).
let x = dist.inverse_cdf(1.0 - p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for CHISQ.INV.RT".to_string(),
);
}
CalcResult::Number(x)
}
pub(crate) fn values_from_range(
&mut self,
left: CellReferenceIndex,
right: CellReferenceIndex,
) -> Result<Vec<Option<f64>>, CalcResult> {
let mut values = Vec::new();
for row_offset in 0..=(right.row - left.row) {
for col_offset in 0..=(right.column - left.column) {
let cell_ref = CellReferenceIndex {
sheet: left.sheet,
row: left.row + row_offset,
column: left.column + col_offset,
};
let cell_value = self.evaluate_cell(cell_ref);
match cell_value {
CalcResult::Number(v) => {
values.push(Some(v));
}
error @ CalcResult::Error { .. } => return Err(error),
_ => {
values.push(None);
}
}
}
}
Ok(values)
}
pub(crate) fn values_from_array(
&mut self,
array: Vec<Vec<ArrayNode>>,
) -> Result<Vec<Option<f64>>, Error> {
let mut values = Vec::new();
for row in array {
for item in row {
match item {
ArrayNode::Number(f) => {
values.push(Some(f));
}
ArrayNode::Error(error) => {
return Err(error);
}
_ => {
values.push(None);
}
}
}
}
Ok(values)
}
// CHISQ.TEST(actual_range, expected_range)
pub(crate) fn fn_chisq_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (width, height, values_left, values_right) = match self.fn_get_two_matrices(args, cell)
{
Ok(v) => v,
Err(r) => return r,
};
let mut values = Vec::with_capacity(values_left.len());
// Now we have:
// - values: flattened (observed, expected)
// - width, height: shape
for i in 0..values_left.len() {
match (values_left[i], values_right[i]) {
(Some(v1), Some(v2)) => {
values.push((v1, v2));
}
_ => {
values.push((1.0, 1.0));
}
}
}
if width == 0 || height == 0 || values.len() < 2 {
return CalcResult::new_error(
Error::NUM,
cell,
"CHISQ.TEST requires at least two data points".to_string(),
);
}
let mut chi2 = 0.0;
for (obs, exp) in &values {
if *obs < 0.0 || *exp < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Negative value in CHISQ.TEST data".to_string(),
);
}
if *exp == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero expected value in CHISQ.TEST".to_string(),
);
}
let diff = obs - exp;
chi2 += (diff * diff) / exp;
}
if chi2 < 0.0 && chi2 > -1e-12 {
chi2 = 0.0;
}
let total = width * height;
if total <= 1 {
return CalcResult::new_error(
Error::NUM,
cell,
"CHISQ.TEST degrees of freedom is zero".to_string(),
);
}
let df = if width > 1 && height > 1 {
(width - 1) * (height - 1)
} else {
total - 1
};
let dist = match ChiSquared::new(df as f64) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid degrees of freedom in CHISQ.TEST".to_string(),
);
}
};
let mut p = 1.0 - dist.cdf(chi2);
// clamp tiny fp noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -0,0 +1,227 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// CORREL(array1, array2) - Returns the correlation coefficient of two data sets
pub(crate) fn fn_correl(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_, _, values_left, values_right) = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(e) => return e,
};
let mut n = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_y2 = 0.0;
let mut sum_xy = 0.0;
for (x_opt, y_opt) in values_left.into_iter().zip(values_right.into_iter()) {
if let (Some(x), Some(y)) = (x_opt, y_opt) {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_y2 += y * y;
sum_xy += x * y;
}
}
// Need at least 2 valid pairs
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"CORREL requires at least two numeric data points in each range".to_string(),
);
}
let num = n * sum_xy - sum_x * sum_y;
let denom_x = n * sum_x2 - sum_x * sum_x;
let denom_y = n * sum_y2 - sum_y * sum_y;
let denom = (denom_x * denom_y).sqrt();
if denom == 0.0 || !denom.is_finite() {
return CalcResult::new_error(
Error::DIV,
cell,
"Division by zero in CORREL".to_string(),
);
}
let r = num / denom;
CalcResult::Number(r)
}
// SLOPE(known_y's, known_x's) - Returns the slope of the linear regression line
pub(crate) fn fn_slope(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_rows, _cols, values_y, values_x) = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(e) => return e,
};
let mut n = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_xy = 0.0;
let len = values_y.len().min(values_x.len());
for i in 0..len {
if let (Some(y), Some(x)) = (values_y[i], values_x[i]) {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_xy += x * y;
}
}
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"SLOPE requires at least two numeric data points".to_string(),
);
}
let denom = n * sum_x2 - sum_x * sum_x;
if denom == 0.0 || !denom.is_finite() {
return CalcResult::new_error(
Error::DIV,
cell,
"Division by zero in SLOPE".to_string(),
);
}
let num = n * sum_xy - sum_x * sum_y;
let slope = num / denom;
CalcResult::Number(slope)
}
// INTERCEPT(known_y's, known_x's) - Returns the y-intercept of the linear regression line
pub(crate) fn fn_intercept(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_rows, _cols, values_y, values_x) = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(e) => return e,
};
let mut n = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_xy = 0.0;
let len = values_y.len().min(values_x.len());
for i in 0..len {
if let (Some(y), Some(x)) = (values_y[i], values_x[i]) {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_xy += x * y;
}
}
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"INTERCEPT requires at least two numeric data points".to_string(),
);
}
let denom = n * sum_x2 - sum_x * sum_x;
if denom == 0.0 || !denom.is_finite() {
return CalcResult::new_error(
Error::DIV,
cell,
"Division by zero in INTERCEPT".to_string(),
);
}
let num = n * sum_xy - sum_x * sum_y;
let slope = num / denom;
let intercept = (sum_y - slope * sum_x) / n;
CalcResult::Number(intercept)
}
// STEYX(known_y's, known_x's) - Returns the standard error of the predicted y-values
pub(crate) fn fn_steyx(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_rows, _cols, values_y, values_x) = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(e) => return e,
};
let mut n = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_xy = 0.0;
// We need the actual pairs again later for residuals
let mut pairs: Vec<(f64, f64)> = Vec::new();
let len = values_y.len().min(values_x.len());
for i in 0..len {
if let (Some(y), Some(x)) = (values_y[i], values_x[i]) {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_xy += x * y;
pairs.push((x, y));
}
}
// Need at least 3 points for STEYX (n - 2 in denominator)
if n < 3.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STEYX requires at least three numeric data points".to_string(),
);
}
let denom = n * sum_x2 - sum_x * sum_x;
if denom == 0.0 || !denom.is_finite() {
return CalcResult::new_error(
Error::DIV,
cell,
"Division by zero in STEYX".to_string(),
);
}
let num = n * sum_xy - sum_x * sum_y;
let slope = num / denom;
let intercept = (sum_y - slope * sum_x) / n;
// Sum of squared residuals: Σ (y - ŷ)^2, ŷ = intercept + slope * x
let mut sse = 0.0;
for (x, y) in pairs {
let y_hat = intercept + slope * x;
let diff = y - y_hat;
sse += diff * diff;
}
let dof = n - 2.0;
if dof <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STEYX has non-positive degrees of freedom".to_string(),
);
}
let sey = (sse / dof).sqrt();
if !sey.is_finite() {
return CalcResult::new_error(Error::DIV, cell, "Numerical error in STEYX".to_string());
}
CalcResult::Number(sey)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,264 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_covariance_p(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
// Same number of cells
if values1_opts.len() != values2_opts.len() {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.P requires arrays of the same size".to_string(),
);
}
// Count numeric data points in each array (ignoring text/booleans/empty)
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
if count1 == 0 || count2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.P requires at least one numeric value in each array".to_string(),
);
}
if count1 != count2 {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.P arrays must have the same number of numeric data points".to_string(),
);
}
// Build paired numeric vectors, position by position
let mut xs: Vec<f64> = Vec::with_capacity(count1);
let mut ys: Vec<f64> = Vec::with_capacity(count2);
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
xs.push(x);
ys.push(y);
}
}
let n = xs.len();
if n == 0 {
// Should be impossible given the checks above, but guard anyway
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.P has no paired numeric data points".to_string(),
);
}
let n_f = n as f64;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
for i in 0..n {
sum_x += xs[i];
sum_y += ys[i];
}
let mean_x = sum_x / n_f;
let mean_y = sum_y / n_f;
let mut sum_prod = 0.0;
for i in 0..n {
let dx = xs[i] - mean_x;
let dy = ys[i] - mean_y;
sum_prod += dx * dy;
}
let cov = sum_prod / n_f;
CalcResult::Number(cov)
}
pub(crate) fn fn_covariance_s(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
// Same number of cells
if values1_opts.len() != values2_opts.len() {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.S requires arrays of the same size".to_string(),
);
}
// Count numeric data points in each array (ignoring text/booleans/empty)
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
if count1 == 0 || count2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.S requires numeric values in each array".to_string(),
);
}
if count1 != count2 {
return CalcResult::new_error(
Error::NA,
cell,
"COVARIANCE.S arrays must have the same number of numeric data points".to_string(),
);
}
// Build paired numeric vectors
let mut xs: Vec<f64> = Vec::with_capacity(count1);
let mut ys: Vec<f64> = Vec::with_capacity(count2);
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
xs.push(x);
ys.push(y);
}
}
let n = xs.len();
if n < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"COVARIANCE.S requires at least two paired data points".to_string(),
);
}
let n_f = n as f64;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
for i in 0..n {
sum_x += xs[i];
sum_y += ys[i];
}
let mean_x = sum_x / n_f;
let mean_y = sum_y / n_f;
let mut sum_prod = 0.0;
for i in 0..n {
let dx = xs[i] - mean_x;
let dy = ys[i] - mean_y;
sum_prod += dx * dy;
}
let cov = sum_prod / (n_f - 1.0);
CalcResult::Number(cov)
}
}

View File

@@ -0,0 +1,135 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// DEVSQ(number1, [number2], ...)
pub(crate) fn fn_devsq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
// tiny helper so we don't repeat ourselves
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if count == 0 {
// No numeric data at all
return CalcResult::new_error(
Error::DIV,
cell,
"DEVSQ with no numeric data".to_string(),
);
}
let n = count as f64;
let mut result = sumsq - (sum * sum) / n;
// Numerical noise can make result slightly negative when it should be 0
if result < 0.0 && result > -1e-12 {
result = 0.0;
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,54 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_expon_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// EXPON.DIST(x, lambda, cumulative)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let lambda = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || lambda <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for EXPON.DIST".to_string(),
};
}
let result = if cumulative {
// CDF
1.0 - (-lambda * x).exp()
} else {
// PDF
lambda * (-lambda * x).exp()
};
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for EXPON.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,418 @@
use statrs::distribution::{Continuous, ContinuousCDF, FisherSnedecor};
use crate::expressions::types::CellReferenceIndex;
use crate::functions::statistical::t_dist::sample_var;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// FISHER(x) = 0.5 * ln((1 + x) / (1 - x))
pub(crate) fn fn_fisher(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
if x <= -1.0 || x >= 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "x must be between -1 and 1 (exclusive) in FISHER".to_string(),
};
}
let ratio = (1.0 + x) / (1.0 - x);
let result = 0.5 * ratio.ln();
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for FISHER".to_string(),
};
}
CalcResult::Number(result)
}
// FISHERINV(y) = (e^(2y) - 1) / (e^(2y) + 1) = tanh(y)
pub(crate) fn fn_fisher_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let y = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Use tanh directly to avoid overflow from exp(2y)
let result = y.tanh();
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for FISHERINV".to_string(),
};
}
CalcResult::Number(result)
}
// F.DIST(x, deg_freedom1, deg_freedom2, cumulative)
pub(crate) fn fn_f_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel domain checks
if x < 0.0 {
return CalcResult::new_error(Error::NUM, cell, "x must be >= 0 in F.DIST".to_string());
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.DIST".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_f_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// F.DIST.RT(x, deg_freedom1, deg_freedom2)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in F.DIST.RT".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.DIST.RT".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
// Right-tail probability: P(F > x) = 1 - CDF(x)
let result = 1.0 - dist.cdf(x);
if result.is_nan() || result.is_infinite() || result < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.DIST.RT".to_string(),
);
}
CalcResult::Number(result)
}
// F.INV(probability, deg_freedom1, deg_freedom2)
pub(crate) fn fn_f_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// probability < 0 or > 1 → #NUM!
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in F.INV".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.INV".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(Error::NUM, cell, "Invalid result for F.INV".to_string());
}
CalcResult::Number(x)
}
// F.INV.RT(probability, deg_freedom1, deg_freedom2)
pub(crate) fn fn_f_inv_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df1 = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let df2 = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p > 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in (0,1] in F.INV.RT".to_string(),
);
}
if df1 < 1.0 || df2 < 1.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"degrees of freedom must be >= 1 in F.INV.RT".to_string(),
);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution".to_string(),
)
}
};
// p is right-tail: p = P(F > x) = 1 - CDF(x)
let x = dist.inverse_cdf(1.0 - p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for F.INV.RT".to_string(),
);
}
CalcResult::Number(x)
}
// F.TEST(array1, array2)
pub(crate) fn fn_f_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
// Get second sample as Vec<Option<f64>>
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
let values1: Vec<f64> = values1_opts.into_iter().flatten().collect();
let values2: Vec<f64> = values2_opts.into_iter().flatten().collect();
let n1 = values1.len();
let n2 = values2.len();
// If fewer than 2 numeric values in either sample -> #DIV/0!
if n1 < 2 || n2 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"F.TEST requires at least two numeric values in each sample".to_string(),
);
}
let v1 = sample_var(&values1);
let v2 = sample_var(&values2);
if v1 <= 0.0 || v2 <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Variance of one sample is zero in F.TEST".to_string(),
);
}
// F ratio: larger variance / smaller variance
let mut f = v1 / v2;
let mut df1 = (n1 - 1) as f64;
let mut df2 = (n2 - 1) as f64;
if f < 1.0 {
f = 1.0 / f;
std::mem::swap(&mut df1, &mut df2);
}
let dist = match FisherSnedecor::new(df1, df2) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for F distribution in F.TEST".to_string(),
);
}
};
// One-tailed right-tail probability
let tail = 1.0 - dist.cdf(f);
// F.TEST is two-tailed: p = 2 * tail (with F >= 1)
let mut p = 2.0 * tail;
// Clamp tiny FP noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -0,0 +1,194 @@
use statrs::distribution::{Continuous, ContinuousCDF, Gamma};
use statrs::function::gamma::{gamma, ln_gamma};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_gamma(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x < 0.0 && x.floor() == x {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
let result = gamma(x);
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// GAMMA.DIST(x, alpha, beta, cumulative)
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"x must be >= 0 in GAMMA.DIST".to_string(),
);
}
if alpha <= 0.0 || beta_scale <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in GAMMA.DIST".to_string(),
);
}
let rate = 1.0 / beta_scale;
let dist = match Gamma::new(alpha, rate) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Gamma distribution".to_string(),
)
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if result.is_nan() || result.is_infinite() {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for GAMMA.DIST".to_string(),
);
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// GAMMA.INV(probability, alpha, beta)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if !(0.0..=1.0).contains(&p) {
return CalcResult::new_error(
Error::NUM,
cell,
"probability must be in [0,1] in GAMMA.INV".to_string(),
);
}
if alpha <= 0.0 || beta_scale <= 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"alpha and beta must be > 0 in GAMMA.INV".to_string(),
);
}
let rate = 1.0 / beta_scale;
let dist = match Gamma::new(alpha, rate) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Gamma distribution".to_string(),
)
}
};
let x = dist.inverse_cdf(p);
if x.is_nan() || x.is_infinite() || x < 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid result for GAMMA.INV".to_string(),
);
}
CalcResult::Number(x)
}
pub(crate) fn fn_gamma_ln(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma function".to_string(),
};
}
let result = ln_gamma(x);
if result.is_nan() || result.is_infinite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for Gamma Ln function".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_gamma_ln_precise(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
self.fn_gamma_ln(args, cell)
}
}

View File

@@ -0,0 +1,39 @@
use statrs::distribution::{ContinuousCDF, Normal};
use crate::expressions::token::Error;
use crate::expressions::types::CellReferenceIndex;
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
impl Model {
pub(crate) fn fn_gauss(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let z = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Failed to construct standard normal distribution".to_string(),
}
}
};
let result = dist.cdf(z) - 0.5;
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for GAUSS".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,87 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut count = 0.0;
let mut product = 1.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
CalcResult::Boolean(b) => {
if let Node::ReferenceKind { .. } = arg {
} else {
product *= if b { 1.0 } else { 0.0 };
count += 1.0;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
count += 1.0;
product *= value;
}
error @ CalcResult::Error { .. } => return error,
CalcResult::Range { .. } => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Unexpected Range".to_string(),
);
}
_ => {}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::String(s) => {
if let Node::ReferenceKind { .. } = arg {
// Do nothing
} else if let Ok(t) = s.parse::<f64>() {
product *= t;
count += 1.0;
} else {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument cannot be cast into number".to_string(),
};
}
}
_ => {
// Ignore everything else
}
};
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Division by Zero".to_string(),
};
}
CalcResult::Number(product.powf(1.0 / count))
}
}

View File

@@ -0,0 +1,108 @@
use statrs::distribution::{Discrete, DiscreteCDF, Hypergeometric};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// =HYPGEOM.DIST(sample_s, number_sample, population_s, number_pop, cumulative)
pub(crate) fn fn_hyp_geom_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 5 {
return CalcResult::new_args_number_error(cell);
}
// sample_s (number of successes in the sample)
let sample_s = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_sample (sample size)
let number_sample = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// population_s (number of successes in the population)
let population_s = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// number_pop (population size)
let number_pop = match self.get_number_no_bools(&args[3], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[4], cell) {
Ok(b) => b,
Err(e) => return e,
};
if sample_s < 0.0 || sample_s > f64::min(number_sample, population_s) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if sample_s < f64::max(0.0, number_sample + population_s - number_pop) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if number_sample <= 0.0 || number_sample > number_pop {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
if population_s <= 0.0 || population_s > number_pop {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
};
}
let n_pop = number_pop as u64;
let k_pop = population_s as u64;
let n_sample = number_sample as u64;
let k = sample_s as u64;
let dist = match Hypergeometric::new(n_pop, k_pop, n_sample) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for hypergeometric distribution".to_string(),
)
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if !prob.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for HYPGEOM.DIST".to_string(),
};
}
CalcResult::Number(prob)
}
}

View File

@@ -0,0 +1,337 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::types::CellReferenceIndex;
use crate::functions::util::build_criteria;
use crate::{
calc_result::{CalcResult, Range},
expressions::parser::Node,
expressions::token::Error,
model::Model,
};
impl Model {
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[1].clone()];
self.fn_countifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// AVERAGEIF(criteria_range, criteria, [average_range])
/// if average_rage is missing then criteria_range will be used
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_averageifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 2 || !args_count.is_multiple_of(2) {
return CalcResult::new_args_number_error(cell);
}
let case_count = args_count / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 0..case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
if result.is_error() {
return result;
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let mut total = 0.0;
let first_range = &ranges[0];
let left_row = first_range.left.row;
let left_column = first_range.left.column;
let right_row = first_range.right.row;
let right_column = first_range.right.column;
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
Ok(s) => s.dimension(),
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
)
}
};
let max_row = dimension.max_row;
let max_column = dimension.max_column;
let open_row = left_row == 1 && right_row == LAST_ROW;
let open_column = left_column == 1 && right_column == LAST_COLUMN;
for row in left_row..right_row + 1 {
if open_row && row > max_row {
// If the row is larger than the max row in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
}
break;
}
for column in left_column..right_column + 1 {
if open_column && column > max_column {
// If the column is larger than the max column in the sheet then all cells are empty.
// We compute it only once
let mut is_true = true;
for fn_criterion in fn_criteria.iter() {
if !fn_criterion(&CalcResult::EmptyCell) {
is_true = false;
break;
}
}
if is_true {
total += (LAST_COLUMN - max_column) as f64;
}
break;
}
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - first_range.left.row,
column: range.left.column + column - first_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
total += 1.0;
}
}
}
CalcResult::Number(total)
}
pub(crate) fn apply_ifs<F>(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
mut apply: F,
) -> Result<(), CalcResult>
where
F: FnMut(f64),
{
let args_count = args.len();
if args_count < 3 || args_count.is_multiple_of(2) {
return Err(CalcResult::new_args_number_error(cell));
}
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
if arg_0.is_error() {
return Err(arg_0);
}
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
Range { left, right }
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
};
let case_count = (args_count - 1) / 2;
// NB: this is a beautiful example of the borrow checker
// The order of these two definitions cannot be swapped.
let mut criteria = Vec::new();
let mut fn_criteria = Vec::new();
let ranges = &mut Vec::new();
for case_index in 1..=case_count {
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
// NB: criterion might be an error. That's ok
criteria.push(criterion);
// NB: We cannot do:
// fn_criteria.push(build_criteria(&criterion));
// because criterion doesn't live long enough
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
if result.is_error() {
return Err(result);
}
if let CalcResult::Range { left, right } = result {
if left.sheet != right.sheet {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
));
}
// TODO test ranges are of the same size as sum_range
ranges.push(Range { left, right });
} else {
return Err(CalcResult::new_error(
Error::VALUE,
cell,
"Expected a range".to_string(),
));
}
}
for criterion in criteria.iter() {
fn_criteria.push(build_criteria(criterion));
}
let left_row = sum_range.left.row;
let left_column = sum_range.left.column;
let mut right_row = sum_range.right.row;
let mut right_column = sum_range.right.column;
if left_row == 1 && right_row == LAST_ROW {
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
if left_column == 1 && right_column == LAST_COLUMN {
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return Err(CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
));
}
};
}
for row in left_row..right_row + 1 {
for column in left_column..right_column + 1 {
let mut is_true = true;
for case_index in 0..case_count {
// We check if value in range n meets criterion n
let range = &ranges[case_index];
let fn_criterion = &fn_criteria[case_index];
let value = self.evaluate_cell(CellReferenceIndex {
sheet: range.left.sheet,
row: range.left.row + row - sum_range.left.row,
column: range.left.column + column - sum_range.left.column,
});
if !fn_criterion(&value) {
is_true = false;
break;
}
}
if is_true {
let v = self.evaluate_cell(CellReferenceIndex {
sheet: sum_range.left.sheet,
row,
column,
});
match v {
CalcResult::Number(n) => apply(n),
CalcResult::Error { .. } => return Err(v),
_ => {}
}
}
}
}
Ok(())
}
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let mut count = 0.0;
let average = |value: f64| {
total += value;
count += 1.0;
};
if let Err(e) = self.apply_ifs(args, cell, average) {
return e;
}
if count == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "division by 0".to_string(),
};
}
CalcResult::Number(total / count)
}
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut min = f64::INFINITY;
let apply_min = |value: f64| min = value.min(min);
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
return e;
}
if min.is_infinite() {
min = 0.0;
}
CalcResult::Number(min)
}
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut max = -f64::INFINITY;
let apply_max = |value: f64| max = value.max(max);
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
return e;
}
if max.is_infinite() {
max = 0.0;
}
CalcResult::Number(max)
}
}

View File

@@ -0,0 +1,124 @@
use statrs::distribution::{Continuous, ContinuousCDF, LogNormal};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_log_norm_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel domain checks
if x <= 0.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
};
}
let dist = match LogNormal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_log_norm_inv(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
use statrs::distribution::{ContinuousCDF, LogNormal};
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Excel domain checks
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
};
}
let dist = match LogNormal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
}
}
};
let result = dist.inverse_cdf(p);
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameter for LOGNORM.INV".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,26 @@
mod beta;
mod binom;
mod chisq;
mod correl;
mod count_and_average;
mod covariance;
mod devsq;
mod exponential;
mod fisher;
mod gamma;
mod gauss;
mod geomean;
mod hypegeom;
mod if_ifs;
mod log_normal;
mod normal;
mod pearson;
mod phi;
mod poisson;
mod rank_eq_avg;
mod standard_dev;
mod standardize;
mod t_dist;
mod variance;
mod weibull;
mod z_test;

View File

@@ -0,0 +1,325 @@
use statrs::distribution::{Continuous, ContinuousCDF, Normal, StudentsT};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// NORM.DIST(x, mean, standard_dev, cumulative)
pub(crate) fn fn_norm_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
// Excel: standard_dev must be > 0
if std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "standard_dev must be > 0 in NORM.DIST".to_string(),
};
}
let dist = match Normal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// NORM.INV(probability, mean, standard_dev)
pub(crate) fn fn_norm_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.INV".to_string(),
};
}
let dist = match Normal::new(mean, std_dev) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for NORM.INV".to_string(),
}
}
};
let x = dist.inverse_cdf(p);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.INV".to_string(),
};
}
CalcResult::Number(x)
}
// NORM.S.DIST(z, cumulative)
pub(crate) fn fn_norm_s_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let z = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[1], cell) {
Ok(b) => b,
Err(e) => return e,
};
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Failed to construct standard normal distribution".to_string(),
}
}
};
let result = if cumulative { dist.cdf(z) } else { dist.pdf(z) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.S.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// NORM.S.INV(probability)
pub(crate) fn fn_norm_s_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "probability must be in (0,1) in NORM.S.INV".to_string(),
};
}
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::ERROR,
origin: cell,
message: "Failed to construct standard normal distribution".to_string(),
}
}
};
let z = dist.inverse_cdf(p);
if !z.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for NORM.S.INV".to_string(),
};
}
CalcResult::Number(z)
}
pub(crate) fn fn_confidence_norm(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let alpha = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let size = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.floor(),
Err(e) => return e,
};
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for CONFIDENCE.NORM".to_string(),
};
}
if size < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Sample size must be at least 1".to_string(),
};
}
let normal = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Failed to construct normal distribution".to_string(),
)
}
};
let quantile = normal.inverse_cdf(1.0 - alpha / 2.0);
if !quantile.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid quantile for CONFIDENCE.NORM".to_string(),
};
}
let margin = quantile * std_dev / size.sqrt();
CalcResult::Number(margin)
}
pub(crate) fn fn_confidence_t(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let alpha = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let size = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// Domain checks
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for CONFIDENCE.T".to_string(),
};
}
// Need at least 2 observations so df = n - 1 > 0
if size < 2.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Sample size must be at least 2".to_string(),
};
}
let df = size - 1.0;
let t_dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
"Failed to construct Student's t distribution".to_string(),
)
}
};
// Two-sided CI => use 1 - alpha/2
let t_crit = t_dist.inverse_cdf(1.0 - alpha / 2.0);
if !t_crit.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid quantile for CONFIDENCE.T".to_string(),
};
}
let margin = t_crit * std_dev / size.sqrt();
CalcResult::Number(margin)
}
}

View File

@@ -0,0 +1,113 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// PEARSON(array1, array2)
pub(crate) fn fn_pearson(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_, _, values_left, values_right) = match self.fn_get_two_matrices(args, cell) {
Ok(result) => result,
Err(e) => return e,
};
// Flatten into (x, y) pairs, skipping non-numeric entries (None)
let mut n: f64 = 0.0;
let mut sum_x = 0.0;
let mut sum_y = 0.0;
let mut sum_x2 = 0.0;
let mut sum_y2 = 0.0;
let mut sum_xy = 0.0;
let len = values_left.len().min(values_right.len());
for i in 0..len {
match (values_left[i], values_right[i]) {
(Some(x), Some(y)) => {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_y2 += y * y;
sum_xy += x * y;
}
_ => {
// Ignore pairs where at least one side is non-numeric
}
}
}
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"PEARSON requires at least two numeric pairs".to_string(),
);
}
// Pearson correlation:
// r = [ n*Σxy - (Σx)(Σy) ] / sqrt( [n*Σx² - (Σx)²] [n*Σy² - (Σy)²] )
let num = n * sum_xy - sum_x * sum_y;
let denom_x = n * sum_x2 - sum_x * sum_x;
let denom_y = n * sum_y2 - sum_y * sum_y;
if denom_x.abs() < 1e-15 || denom_y.abs() < 1e-15 {
// Zero variance in at least one series
return CalcResult::new_error(
Error::DIV,
cell,
"PEARSON cannot be computed when one series has zero variance".to_string(),
);
}
let denom = (denom_x * denom_y).sqrt();
CalcResult::Number(num / denom)
}
// RSQ(array1, array2) = CORREL(array1, array2)^2
pub(crate) fn fn_rsq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let (_rows, _cols, values1, values2) = match self.fn_get_two_matrices(args, cell) {
Ok(s) => s,
Err(e) => return e,
};
let mut n = 0.0_f64;
let mut sum_x = 0.0_f64;
let mut sum_y = 0.0_f64;
let mut sum_x2 = 0.0_f64;
let mut sum_y2 = 0.0_f64;
let mut sum_xy = 0.0_f64;
let len = values1.len().min(values2.len());
for i in 0..len {
if let (Some(x), Some(y)) = (values1[i], values2[i]) {
n += 1.0;
sum_x += x;
sum_y += y;
sum_x2 += x * x;
sum_y2 += y * y;
sum_xy += x * y;
}
}
if n < 2.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"RSQ requires at least two numeric data points in each range".to_string(),
);
}
let num = n * sum_xy - sum_x * sum_y;
let denom_x = n * sum_x2 - sum_x * sum_x;
let denom_y = n * sum_y2 - sum_y * sum_y;
let denom = (denom_x * denom_y).sqrt();
if denom == 0.0 || !denom.is_finite() {
return CalcResult::new_error(Error::DIV, cell, "Division by zero in RSQ".to_string());
}
let r = num / denom;
CalcResult::Number(r * r)
}
}

View File

@@ -0,0 +1,21 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
impl Model {
// PHI(x) = standard normal PDF at x
pub(crate) fn fn_phi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// Standard normal PDF: (1 / sqrt(2π)) * exp(-x^2 / 2)
let result = (-(x * x) / 2.0).exp() / (2.0 * std::f64::consts::PI).sqrt();
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,94 @@
use statrs::distribution::{Discrete, DiscreteCDF, Poisson};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// =POISSON.DIST(x, mean, cumulative)
pub(crate) fn fn_poisson_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
// x
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
// mean (lambda)
let lambda = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || lambda < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
};
}
// Guard against insane k for u64
if x < 0.0 || x > (u64::MAX as f64) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
};
}
let k = x as u64;
// Special-case lambda = 0: degenerate distribution at 0
if lambda == 0.0 {
let result = if cumulative {
// For x >= 0, P(X <= x) = 1
1.0
} else {
// P(X = 0) = 1, P(X = k>0) = 0
if k == 0 {
1.0
} else {
0.0
}
};
return CalcResult::Number(result);
}
let dist = match Poisson::new(lambda) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for POISSON.DIST".to_string(),
}
}
};
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
if !prob.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for POISSON.DIST".to_string(),
};
}
CalcResult::Number(prob)
}
}

View File

@@ -0,0 +1,202 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// Helper to collect numeric values from the 2nd argument of RANK.*
fn collect_rank_values(
&mut self,
arg: &Node,
cell: CellReferenceIndex,
) -> Result<Vec<f64>, CalcResult> {
let values = match self.evaluate_node_in_context(arg, cell) {
CalcResult::Array(array) => match self.values_from_array(array) {
Ok(v) => v,
Err(e) => {
return Err(CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: format!("Unsupported array argument: {}", e),
})
}
},
CalcResult::Range { left, right } => self.values_from_range(left, right)?,
CalcResult::Boolean(value) => {
if !matches!(arg, Node::ReferenceKind { .. }) {
vec![Some(if value { 1.0 } else { 0.0 })]
} else {
return Err(CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Unsupported argument type".to_string(),
});
}
}
_ => {
return Err(CalcResult::Error {
error: Error::NIMPL,
origin: cell,
message: "Unsupported argument type".to_string(),
})
}
};
let numeric_values: Vec<f64> = values.into_iter().flatten().collect();
Ok(numeric_values)
}
// RANK.EQ(number, ref, [order])
pub(crate) fn fn_rank_eq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !(2..=3).contains(&args.len()) {
return CalcResult::new_args_number_error(cell);
}
// number
let number = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// ref
let mut values = match self.collect_rank_values(&args[1], cell) {
Ok(v) => v,
Err(e) => return e,
};
if values.is_empty() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "No numeric values for RANK.EQ".to_string(),
};
}
// order: default 0 (descending)
let order = if args.len() == 2 {
0.0
} else {
match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
}
};
values.retain(|v| !v.is_nan());
// "better" = greater (descending) or smaller (ascending)
let mut better = 0;
let mut equal = 0;
if order == 0.0 {
// descending
for v in &values {
if *v > number {
better += 1;
} else if *v == number {
equal += 1;
}
}
} else {
// ascending
for v in &values {
if *v < number {
better += 1;
} else if *v == number {
equal += 1;
}
}
}
if equal == 0 {
return CalcResult::Error {
error: Error::NA,
origin: cell,
message: "Number not found in reference for RANK.EQ".to_string(),
};
}
let rank = (better as f64) + 1.0;
CalcResult::Number(rank)
}
// RANK.AVG(number, ref, [order])
pub(crate) fn fn_rank_avg(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !(2..=3).contains(&args.len()) {
return CalcResult::new_args_number_error(cell);
}
// number
let number = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
// ref
let mut values = match self.collect_rank_values(&args[1], cell) {
Ok(v) => v,
Err(e) => return e,
};
if values.is_empty() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "No numeric values for RANK.AVG".to_string(),
};
}
// order: default 0 (descending)
let order = if args.len() == 2 {
0.0
} else {
match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
}
};
values.retain(|v| !v.is_nan());
// > or < depending on order
let mut better = 0;
let mut equal = 0;
if order == 0.0 {
// descending
for v in &values {
if *v > number {
better += 1;
} else if *v == number {
equal += 1;
}
}
} else {
// ascending
for v in &values {
if *v < number {
better += 1;
} else if *v == number {
equal += 1;
}
}
}
if equal == 0 {
return CalcResult::Error {
error: Error::NA,
origin: cell,
message: "Number not found in reference for RANK.AVG".to_string(),
};
}
// For ties, average of the ranks. If the equal values occupy positions
// (better+1) ..= (better+equal), the average is:
// better + (equal + 1) / 2
let better_f = better as f64;
let equal_f = equal as f64;
let rank = better_f + (equal_f + 1.0) / 2.0;
CalcResult::Number(rank)
}
}

View File

@@ -0,0 +1,519 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_stdev_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEV.P with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
// clamp tiny negatives from FP noise
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdev_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEV.S requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdeva(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEVA requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
pub(crate) fn fn_stdevpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"STDEVPA with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var.sqrt())
}
}

View File

@@ -0,0 +1,38 @@
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_standardize(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// STANDARDIZE(x, mean, standard_dev)
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let mean = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let std_dev = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
if std_dev <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "standard_dev must be > 0 in STANDARDIZE".to_string(),
};
}
let z = (x - mean) / std_dev;
CalcResult::Number(z)
}
}

View File

@@ -0,0 +1,588 @@
use statrs::distribution::{Continuous, ContinuousCDF, StudentsT};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
fn mean(xs: &[f64]) -> f64 {
let n = xs.len();
if n == 0 {
return 0.0;
}
let mut s = 0.0;
for &x in xs {
s += x;
}
s / (n as f64)
}
pub(crate) fn sample_var(xs: &[f64]) -> f64 {
let n = xs.len();
if n < 2 {
return 0.0;
}
let m = mean(xs);
let mut s = 0.0;
for &x in xs {
let d = x - m;
s += d * d;
}
s / ((n - 1) as f64)
}
enum TTestType {
Paired,
TwoSampleEqualVar,
TwoSampleUnequalVar,
}
enum TTestTails {
OneTailed,
TwoTailed,
}
impl Model {
// T.DIST(x, deg_freedom, cumulative)
pub(crate) fn fn_t_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 3 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[2], cell) {
Ok(b) => b,
Err(e) => return e,
};
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST".to_string(),
};
}
CalcResult::Number(result)
}
// T.DIST.2T(x, deg_freedom)
pub(crate) fn fn_t_dist_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if x < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "x must be >= 0 in T.DIST.2T".to_string(),
};
}
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST.2T".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST.2T".to_string(),
}
}
};
let upper_tail = 1.0 - dist.cdf(x);
let mut result = 2.0 * upper_tail;
result = result.clamp(0.0, 1.0);
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST.2T".to_string(),
};
}
CalcResult::Number(result)
}
// T.DIST.RT(x, deg_freedom)
pub(crate) fn fn_t_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "deg_freedom must be >= 1 in T.DIST.RT".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.DIST.RT".to_string(),
}
}
};
let result = 1.0 - dist.cdf(x);
if !result.is_finite() || result < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.DIST.RT".to_string(),
};
}
CalcResult::Number(result)
}
// T.INV(probability, deg_freedom)
pub(crate) fn fn_t_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p >= 1.0 || df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV".to_string(),
}
}
};
let x = dist.inverse_cdf(p);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.INV".to_string(),
};
}
CalcResult::Number(x)
}
// T.INV.2T(probability, deg_freedom)
pub(crate) fn fn_t_inv_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let p = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let df = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f.trunc(),
Err(e) => return e,
};
if p <= 0.0 || p > 1.0 || df < 1.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV.2T".to_string(),
};
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for T.INV.2T".to_string(),
}
}
};
// Two-sided: F(x) = 1 - p/2
let target_cdf = 1.0 - p / 2.0;
let x = dist.inverse_cdf(target_cdf);
if !x.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for T.INV.2T".to_string(),
};
}
CalcResult::Number(x.abs())
}
// T.TEST(array1, array2, tails, type)
pub(crate) fn fn_t_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in first array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"First argument must be a range or array".to_string(),
);
}
};
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(a) => match self.values_from_array(a) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in second array: {:?}", error),
);
}
},
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Second argument must be a range or array".to_string(),
);
}
};
let tails = match self.get_number(&args[2], cell) {
Ok(f) => {
let tf = f.trunc();
if tf == 1.0 {
TTestTails::OneTailed
} else if tf == 2.0 {
TTestTails::TwoTailed
} else {
return CalcResult::new_error(
Error::NUM,
cell,
"tails must be 1 or 2".to_string(),
);
}
}
Err(e) => return e,
};
let test_type = match self.get_number(&args[3], cell) {
Ok(f) => {
let tf = f.trunc();
match tf {
1.0 => TTestType::Paired,
2.0 => TTestType::TwoSampleEqualVar,
3.0 => TTestType::TwoSampleUnequalVar,
_ => {
return CalcResult::new_error(
Error::NUM,
cell,
"type must be 1, 2, or 3".to_string(),
);
}
}
}
Err(e) => return e,
};
let (values1, values2): (Vec<f64>, Vec<f64>) = if matches!(test_type, TTestType::Paired) {
values1_opts
.into_iter()
.zip(values2_opts)
.filter_map(|(o1, o2)| match (o1, o2) {
(Some(v1), Some(v2)) => Some((v1, v2)),
_ => None, // skip if either is None
})
.unzip()
} else {
// keep only numeric entries, ignore non-numeric (Option::None)
let v1: Vec<f64> = values1_opts.into_iter().flatten().collect();
let v2: Vec<f64> = values2_opts.into_iter().flatten().collect();
(v1, v2)
};
let n1 = values1.len();
let n2 = values2.len();
if n1 == 0 || n2 == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"T.TEST requires non-empty samples".to_string(),
);
}
let (t_stat, df) = match test_type {
TTestType::Paired => {
if n1 != n2 {
return CalcResult::new_error(
Error::NA,
cell,
"For paired T.TEST, both samples must have the same length".to_string(),
);
}
if n1 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Paired T.TEST requires at least two pairs".to_string(),
);
}
let mut diffs = Vec::with_capacity(n1);
for i in 0..n1 {
diffs.push(values1[i] - values2[i]);
}
let nd = diffs.len();
let md = mean(&diffs);
let vd = sample_var(&diffs);
if vd <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero variance in paired T.TEST".to_string(),
);
}
let sd = vd.sqrt();
let t_stat = md / (sd / (nd as f64).sqrt());
let df = (nd - 1) as f64;
(t_stat, df)
}
// 2: two-sample, equal variance (homoscedastic)
TTestType::TwoSampleEqualVar => {
if n1 < 2 || n2 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Two-sample T.TEST type 2 requires at least two values in each sample"
.to_string(),
);
}
let m1 = mean(&values1);
let m2 = mean(&values2);
let v1 = sample_var(&values1);
let v2 = sample_var(&values2);
let df_i = (n1 + n2 - 2) as i32;
if df_i <= 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Degrees of freedom must be positive in T.TEST type 2".to_string(),
);
}
let df = df_i as f64;
let sp2 = (((n1 - 1) as f64) * v1 + ((n2 - 1) as f64) * v2) / df; // pooled variance
if sp2 <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero pooled variance in T.TEST type 2".to_string(),
);
}
let denom = (sp2 * (1.0 / (n1 as f64) + 1.0 / (n2 as f64))).sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero denominator in T.TEST type 2".to_string(),
);
}
let t_stat = (m1 - m2) / denom;
(t_stat, df)
}
// two-sample, unequal variance (Welch)
TTestType::TwoSampleUnequalVar => {
if n1 < 2 || n2 < 2 {
return CalcResult::new_error(
Error::DIV,
cell,
"Two-sample T.TEST type 3 requires at least two values in each sample"
.to_string(),
);
}
let m1 = mean(&values1);
let m2 = mean(&values2);
let v1 = sample_var(&values1);
let v2 = sample_var(&values2);
let s1n = v1 / (n1 as f64);
let s2n = v2 / (n2 as f64);
let denom = (s1n + s2n).sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Zero denominator in T.TEST type 3".to_string(),
);
}
let t_stat = (m1 - m2) / denom;
let num_df = (s1n + s2n).powi(2);
let den_df = (s1n * s1n) / ((n1 - 1) as f64) + (s2n * s2n) / ((n2 - 1) as f64);
if den_df == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Invalid degrees of freedom in T.TEST type 3".to_string(),
);
}
let df = num_df / den_df;
(t_stat, df)
}
};
if df <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Degrees of freedom must be positive in T.TEST".to_string(),
);
}
let dist = match StudentsT::new(0.0, 1.0, df) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Invalid parameters for Student's t distribution".to_string(),
);
}
};
let t_abs = t_stat.abs();
let cdf = dist.cdf(t_abs);
let mut p = match tails {
TTestTails::OneTailed => 1.0 - cdf,
TTestTails::TwoTailed => 2.0 * (1.0 - cdf),
};
// clamp tiny fp noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -0,0 +1,518 @@
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
pub(crate) fn fn_var_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"VAR.P with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_var_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"VAR.S requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_vara(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..=row2 {
for column in column1..=column2 {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now (A semantics to be added)
}
}
}
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"VARA requires at least two numeric values".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
pub(crate) fn fn_varpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut sum = 0.0;
let mut sumsq = 0.0;
let mut count: u64 = 0;
#[inline]
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
*sum += value;
*sumsq += value * value;
*count += 1;
}
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
CalcResult::String(_) => {
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
}
CalcResult::Boolean(value) => {
let val = if value { 1.0 } else { 0.0 };
accumulate(&mut sum, &mut sumsq, &mut count, val);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
accumulate(&mut sum, &mut sumsq, &mut count, value);
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore non-numeric for now
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore non-numeric for now
}
}
}
if count == 0 {
return CalcResult::new_error(
Error::DIV,
cell,
"VARPA with no numeric data".to_string(),
);
}
let n = count as f64;
let mut var = (sumsq - (sum * sum) / n) / n;
if var < 0.0 && var > -1e-12 {
var = 0.0;
}
CalcResult::Number(var)
}
}

View File

@@ -0,0 +1,71 @@
use statrs::distribution::{Continuous, ContinuousCDF, Weibull};
use crate::expressions::types::CellReferenceIndex;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
impl Model {
// WEIBULL.DIST(x, alpha, beta, cumulative)
pub(crate) fn fn_weibull_dist(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
if args.len() != 4 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(e) => return e,
};
let alpha = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(e) => return e,
};
let beta = match self.get_number_no_bools(&args[2], cell) {
Ok(f) => f,
Err(e) => return e,
};
let cumulative = match self.get_boolean(&args[3], cell) {
Ok(b) => b,
Err(e) => return e,
};
if x < 0.0 || alpha <= 0.0 || beta <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for WEIBULL.DIST".to_string(),
};
}
// statrs::Weibull: shape = k (alpha), scale = lambda (beta)
let dist = match Weibull::new(alpha, beta) {
Ok(d) => d,
Err(_) => {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid parameters for WEIBULL.DIST".to_string(),
}
}
};
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
if !result.is_finite() {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid result for WEIBULL.DIST".to_string(),
};
}
CalcResult::Number(result)
}
}

View File

@@ -0,0 +1,171 @@
use statrs::distribution::{ContinuousCDF, Normal};
use crate::expressions::token::Error;
use crate::expressions::types::CellReferenceIndex;
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
impl Model {
// Z.TEST(array, x, [sigma])
pub(crate) fn fn_z_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// 2 or 3 arguments
if args.len() < 2 || args.len() > 3 {
return CalcResult::new_args_number_error(cell);
}
let array_arg = self.evaluate_node_in_context(&args[0], cell);
// Flatten first argument into Vec<Option<f64>> (numeric / non-numeric)
let values = match array_arg {
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
Ok(v) => v,
Err(error) => return error,
},
CalcResult::Array(array) => match self.values_from_array(array) {
Ok(v) => v,
Err(error) => {
return CalcResult::new_error(
Error::VALUE,
cell,
format!("Error in array argument: {:?}", error),
);
}
},
CalcResult::Number(v) => vec![Some(v)],
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST first argument must be a range or array".to_string(),
);
}
};
// Collect basic stats on numeric entries
let mut sum = 0.0;
let mut count: u64 = 0;
for x in values.iter().flatten() {
sum += x;
count += 1;
}
// Excel: if array has no numeric values -> #N/A
if count == 0 {
return CalcResult::new_error(
Error::NA,
cell,
"Z.TEST array has no numeric data".to_string(),
);
}
let n = count as f64;
let mean = sum / n;
// x argument (hypothesized population mean)
let x_value = match self.evaluate_node_in_context(&args[1], cell) {
CalcResult::Number(v) => v,
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST second argument (x) must be numeric".to_string(),
);
}
};
// Optional sigma
let mut sigma: Option<f64> = None;
if args.len() == 3 {
match self.evaluate_node_in_context(&args[2], cell) {
CalcResult::Number(v) => {
if v == 0.0 {
return CalcResult::new_error(
Error::NUM,
cell,
"Z.TEST sigma cannot be zero".to_string(),
);
}
sigma = Some(v);
}
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::new_error(
Error::VALUE,
cell,
"Z.TEST sigma (third argument) must be numeric".to_string(),
);
}
}
}
// If sigma omitted, use sample standard deviation STDEV(array)
let sigma_value = if let Some(s) = sigma {
s
} else {
// Excel: if only one numeric value and sigma omitted -> #DIV/0!
if count <= 1 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST requires at least two values when sigma is omitted".to_string(),
);
}
// Compute sum of squared deviations
let mut sumsq_dev = 0.0;
for x in values.iter().flatten() {
let d = x - mean;
sumsq_dev += d * d;
}
let var = sumsq_dev / (n - 1.0);
if var <= 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST standard deviation is zero".to_string(),
);
}
var.sqrt()
};
// Compute z statistic: (mean - x) / (sigma / sqrt(n))
let denom = sigma_value / n.sqrt();
if denom == 0.0 {
return CalcResult::new_error(
Error::DIV,
cell,
"Z.TEST denominator is zero".to_string(),
);
}
let z = (mean - x_value) / denom;
// Standard normal CDF
let dist = match Normal::new(0.0, 1.0) {
Ok(d) => d,
Err(_) => {
return CalcResult::new_error(
Error::NUM,
cell,
"Cannot create standard normal distribution in Z.TEST".to_string(),
);
}
};
let mut p = 1.0 - dist.cdf(z);
// clamp tiny FP noise
if p < 0.0 && p > -1e-15 {
p = 0.0;
}
if p > 1.0 && p < 1.0 + 1e-15 {
p = 1.0;
}
CalcResult::Number(p)
}
}

View File

@@ -1,4 +1,5 @@
mod test_actions;
mod test_arabic_roman;
mod test_binary_search;
mod test_cell;
mod test_cell_clear_contents;
@@ -39,12 +40,14 @@ mod test_metadata;
mod test_model_cell_clear_all;
mod test_model_is_empty_cell;
mod test_move_formula;
mod test_mround_trunc_int;
mod test_quote_prefix;
mod test_row_column_styles;
mod test_set_user_input;
mod test_sheet_markup;
mod test_sheets;
mod test_styles;
mod test_sumsq;
mod test_trigonometric;
mod test_true_false;
mod test_weekday_return_types;
@@ -55,12 +58,18 @@ mod test_yearfrac_basis;
pub(crate) mod util;
mod engineering;
mod statistical;
mod test_fn_offset;
mod test_number_format;
mod test_arrays;
mod test_combin_combina;
mod test_escape_quotes;
mod test_even_odd;
mod test_exp_sign;
mod test_extend;
mod test_floor;
mod test_fn_datevalue_timevalue;
mod test_fn_fv;
mod test_fn_round;
mod test_fn_type;
@@ -80,5 +89,6 @@ mod test_percentage;
mod test_set_functions_error_handling;
mod test_sheet_names;
mod test_today;
mod test_trigonometric_reciprocals;
mod test_types;
mod user_model;

View File

@@ -0,0 +1,24 @@
mod test_fn_avedev;
mod test_fn_binom;
mod test_fn_chisq;
mod test_fn_chisq_test;
mod test_fn_confidence;
mod test_fn_covariance;
mod test_fn_devsq;
mod test_fn_expon_dist;
mod test_fn_f;
mod test_fn_f_test;
mod test_fn_fisher;
mod test_fn_gauss;
mod test_fn_hyp_geom_dist;
mod test_fn_log_norm;
mod test_fn_norm_dist;
mod test_fn_pearson;
mod test_fn_phi;
mod test_fn_poisson;
mod test_fn_stdev;
mod test_fn_t_dist;
mod test_fn_t_test;
mod test_fn_var;
mod test_fn_weibull;
mod test_fn_z_test;

View File

@@ -0,0 +1,40 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=AVEDEV(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"7.25");
}

View File

@@ -0,0 +1,86 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_binom_dist_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.DIST(6, 10, 0.5, TRUE)");
model._set("A2", "=BINOM.DIST(6, 10, 0.5, FALSE)");
model._set("A3", "=BINOM.DIST(6, 10, 0.5)"); // wrong args
model._set("A4", "=BINOM.DIST(6, 10, 0.5, TRUE, FALSE)"); // too many args
model.evaluate();
// P(X <= 6) for X ~ Bin(10, 0.5) = 0.828125
assert_eq!(model._get_text("A1"), *"0.828125");
// P(X = 6) for X ~ Bin(10, 0.5) = 0.205078125
assert_eq!(model._get_text("A2"), *"0.205078125");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_binom_dist_range_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.DIST.RANGE(60, 0.75, 48)");
model._set("A2", "=BINOM.DIST.RANGE(60, 0.75, 45, 50)");
model._set("A3", "=BINOM.DIST.RANGE(60, 1.2, 45, 50)"); // p > 1 -> #NUM!
model._set("A4", "=BINOM.DIST.RANGE(60, 0.75, 50, 45)"); // lower > upper -> #NUM!");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.083974967");
assert_eq!(model._get_text("A2"), *"0.523629793");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
}
#[test]
fn test_fn_binom_inv_smoke() {
let mut model = new_empty_model();
model._set("A1", "=BINOM.INV(6, 0.5, 0.75)");
model._set("A2", "=BINOM.INV(6, 0.5, -0.1)"); // alpha < 0 -> #NUM!
model._set("A3", "=BINOM.INV(6, 1.2, 0.75)"); // p > 1 -> #NUM!
model._set("A4", "=BINOM.INV(6, 0.5)"); // args error
model.evaluate();
assert_eq!(model._get_text("A1"), *"4");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_negbinom_dist_smoke() {
let mut model = new_empty_model();
// Valid: PMF (non-cumulative) and CDF (cumulative)
model._set("A1", "=NEGBINOM.DIST(10, 5, 0.25, FALSE)");
model._set("A2", "=NEGBINOM.DIST(10, 5, 0.25, TRUE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NEGBINOM.DIST(10, 5, 0.25)");
model._set("A4", "=NEGBINOM.DIST(10, 5, 0.25, TRUE, FALSE)");
// Domain errors:
// p < 0 or p > 1 -> #NUM!
model._set("A5", "=NEGBINOM.DIST(10, 5, 1.5, TRUE)");
// number_f < 0 -> #NUM!
model._set("A6", "=NEGBINOM.DIST(-1, 5, 0.25, TRUE)");
// number_s < 1 -> #NUM!
model._set("A7", "=NEGBINOM.DIST(10, 0, 0.25, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.05504866");
assert_eq!(model._get_text("A2"), *"0.313514058");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,140 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF
model._set("A1", "=CHISQ.DIST(0.5, 4, TRUE)");
// Valid: PDF
model._set("A2", "=CHISQ.DIST(0.5, 4, FALSE)");
// Valid: CDF with numeric cumulative (1 -> TRUE)
model._set("A3", "=CHISQ.DIST(0.5, 4, 1)");
// Wrong number of args -> #ERROR!
model._set("A4", "=CHISQ.DIST(0.5, 4)");
model._set("A5", "=CHISQ.DIST(0.5, 4, TRUE, FALSE)");
// Domain errors
// x < 0 -> #NUM!
model._set("A6", "=CHISQ.DIST(-1, 4, TRUE)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.DIST(0.5, 0, TRUE)");
model.evaluate();
// Values for df = 4
// CDF(0.5) ≈ 0.026499021, PDF(0.5) ≈ 0.097350098
assert_eq!(model._get_text("A1"), *"0.026499021");
assert_eq!(model._get_text("A2"), *"0.097350098");
assert_eq!(model._get_text("A3"), *"0.026499021");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_chisq_dist_rt_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.DIST.RT(0.5, 4)");
model._set("A2", "=CHISQ.DIST.RT(5, 4)");
// Too few / too many args -> #ERROR!
model._set("A3", "=CHISQ.DIST.RT(0.5)");
model._set("A4", "=CHISQ.DIST.RT(0.5, 4, 1)");
// Domain errors
// x < 0 -> #NUM!
model._set("A5", "=CHISQ.DIST.RT(-1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A6", "=CHISQ.DIST.RT(0.5, 0)");
model.evaluate();
// For df = 4:
// right tail at 0.5 ≈ 0.973500979
// right tail at 5.0 ≈ 0.287297495
assert_eq!(model._get_text("A1"), *"0.973500979");
assert_eq!(model._get_text("A2"), *"0.287297495");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_chisq_inv_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.INV(0.95, 4)");
model._set("A2", "=CHISQ.INV(0.1, 10)");
// Wrong number of args -> #ERROR!
model._set("A3", "=CHISQ.INV(0.95)");
model._set("A4", "=CHISQ.INV(0.95, 4, 1)");
// Domain errors
// probability < 0 or > 1 -> #NUM!
model._set("A5", "=CHISQ.INV(-0.1, 4)");
model._set("A6", "=CHISQ.INV(1.1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.INV(0.5, 0)");
model.evaluate();
// Standard critical values:
// CHISQ.INV(0.95, 4) ≈ 9.487729037
// CHISQ.INV(0.1, 10) ≈ 4.865182052
assert_eq!(model._get_text("A1"), *"9.487729037");
assert_eq!(model._get_text("A2"), *"4.865182052");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_chisq_inv_rt_smoke() {
let mut model = new_empty_model();
// Valid calls
model._set("A1", "=CHISQ.INV.RT(0.05, 4)");
model._set("A2", "=CHISQ.INV.RT(0.9, 10)");
// Wrong number of args -> #ERROR!
model._set("A3", "=CHISQ.INV.RT(0.05)");
model._set("A4", "=CHISQ.INV.RT(0.05, 4, 1)");
// Domain errors
// probability < 0 or > 1 -> #NUM!
model._set("A5", "=CHISQ.INV.RT(-0.1, 4)");
model._set("A6", "=CHISQ.INV.RT(1.1, 4)");
// deg_freedom < 1 -> #NUM!
model._set("A7", "=CHISQ.INV.RT(0.5, 0)");
model.evaluate();
// For chi-square:
// CHISQ.INV.RT(0.05, 4) = CHISQ.INV(0.95, 4) ≈ 9.487729037
// CHISQ.INV.RT(0.9, 10) = CHISQ.INV(0.1, 10) ≈ 4.865182052
assert_eq!(model._get_text("A1"), *"9.487729037");
assert_eq!(model._get_text("A2"), *"4.865182052");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,127 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "48");
model._set("A3", "32");
model._set("A4", "12");
model._set("A5", "1");
model._set("A6", "'13");
model._set("A7", "TRUE");
model._set("A8", "1");
model._set("A9", "13");
model._set("A10", "15");
model._set("B2", "55");
model._set("B3", "34");
model._set("B4", "13");
model._set("B5", "blah");
model._set("B6", "13");
model._set("B7", "1");
model._set("B8", "TRUE");
model._set("B9", "'14");
model._set("B10", "16");
model._set("C1", "=CHISQ.TEST(A2:A10, B2:B10)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.997129538");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("A2", "TRUE");
model._set("A3", "4");
model._set("A4", "'3");
model._set("B2", "2");
model._set("B3", "2");
model._set("B4", "2");
model._set("C1", "=CHISQ.TEST(A2:A4, B2:B4)");
model._set("G5", "=CHISQ.TEST({TRUE,4,\"3\"}, {2,2,2})");
// 1D arrays with different shapes
model._set("G6", "=CHISQ.TEST({1,2,3}, {3;3;4})");
// 2D array
model._set("G7", "=CHISQ.TEST({1,2;3,4},{2,3;2,2})");
// 1D arrays with same shape
model._set("G8", "=CHISQ.TEST({1,2,3,4}, {2,3,4,5})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.367879441");
assert_eq!(model._get_text("G5"), *"0.367879441");
assert_eq!(model._get_text("G6"), *"0.383531573");
assert_eq!(model._get_text("G7"), *"0.067889155");
assert_eq!(model._get_text("G8"), *"0.733094495");
}
#[test]
fn more_arrays() {
let mut model = new_empty_model();
model._set("V20", "2");
model._set("V21", "4");
model._set("W20", "3");
model._set("W21", "5");
model._set("C1", "=CHISQ.TEST({1,2;3,4},V20:W21)");
model._set("C2", "=CHISQ.TEST({1,2;3,4}, {2,3;4,5})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.257280177");
assert_eq!(model._get_text("C2"), *"0.257280177");
}
#[test]
fn array_ranges() {
let mut model = new_empty_model();
model._set("A2", "TRUE");
model._set("A3", "4");
model._set("A4", "'3");
model._set("B2", "2");
model._set("B3", "2");
model._set("B4", "2");
model._set("C1", "=CHISQ.TEST(A2:A4, {2;2;2})");
model._set("G5", "=CHISQ.TEST({TRUE;4;\"3\"}, B2:B4)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.367879441");
assert_eq!(model._get_text("G5"), *"0.367879441");
}
#[test]
fn array_2d_ranges() {
let mut model = new_empty_model();
model._set("A2", "2");
model._set("B2", "3");
model._set("C2", "4");
model._set("A3", "5");
model._set("B3", "6");
model._set("C3", "7");
model._set("G1", "=CHISQ.TEST({1,2,3;4,2,6}, A2:C3)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.129195493");
}
#[test]
fn ranges_1d() {
let mut model = new_empty_model();
model._set("A2", "1");
model._set("A3", "2");
model._set("A4", "3");
model._set("B2", "4");
model._set("C2", "5");
model._set("D2", "6");
model._set("G1", "=CHISQ.TEST(A2:A4, B2:D2)");
model._set("G2", "=CHISQ.TEST(B2:D2, A2:A4)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.062349477");
assert_eq!(model._get_text("G2"), *"0.000261259");
}

View File

@@ -0,0 +1,51 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_confidence_norm_smoke() {
let mut model = new_empty_model();
model._set("A1", "=CONFIDENCE.NORM(0.05, 2.5, 50)");
// Some edge/error cases
model._set("A2", "=CONFIDENCE.NORM(0, 2.5, 50)"); // alpha <= 0 -> #NUM!
model._set("A3", "=CONFIDENCE.NORM(1, 2.5, 50)"); // alpha >= 1 -> #NUM!
model._set("A4", "=CONFIDENCE.NORM(0.05, -1, 50)"); // std_dev <=0 -> #NUM!
model._set("A5", "=CONFIDENCE.NORM(0.05, 2.5, 1)");
model._set("A6", "=CONFIDENCE.NORM(0.05, 2.5, 0.99)"); // size < 1 -> #NUM!
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.692951912");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"4.899909961");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_confidence_t_smoke() {
let mut model = new_empty_model();
model._set("A1", "=CONFIDENCE.T(0.05, 50000, 100)");
// Some edge/error cases
model._set("A2", "=CONFIDENCE.T(0, 50000, 100)"); // alpha <= 0 -> #NUM!
model._set("A3", "=CONFIDENCE.T(1, 50000, 100)"); // alpha >= 1 -> #NUM!
model._set("A4", "=CONFIDENCE.T(0.05, -1, 100)");
model._set("A5", "=CONFIDENCE.T(0.05, 50000, 1)");
model._set("A6", "=CONFIDENCE.T(0.05, 50000, 1.7)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"9921.08475793");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#DIV/0!");
assert_eq!(model._get_text("A6"), *"#DIV/0!");
}

View File

@@ -0,0 +1,57 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_covariance_smoke() {
let mut model = new_empty_model();
model._set("A1", "3");
model._set("A2", "9");
model._set("A3", "2");
model._set("A4", "7");
model._set("A5", "4");
model._set("A6", "12");
model._set("B1", "5");
model._set("B2", "15");
model._set("B3", "6");
model._set("B4", "17");
model._set("B5", "8");
model._set("B6", "20");
model._set("C1", "=COVARIANCE.P(A1:A6, B1:B6)");
model._set("C2", "=COVARIANCE.S(A1:A6, B1:B6)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"19.194444444");
assert_eq!(model._get_text("C2"), *"23.033333333");
}
#[test]
fn arrays_mixed() {
let mut model = new_empty_model();
model._set("A2", "2");
model._set("A3", "4");
model._set("A4", "6");
model._set("A5", "8");
model._set("B2", "1");
model._set("B3", "3");
model._set("B4", "5");
model._set("B5", "7");
model._set("C1", "=COVARIANCE.P(A2:A5, {1,3,5,7})");
model._set("C2", "=COVARIANCE.S(A2:A5, {1,3,5,7})");
model._set("C3", "=COVARIANCE.P(A2:A5, B2:B5)");
model._set("C4", "=COVARIANCE.S(A2:A5, B2:B5)");
model._set("C5", "=COVARIANCE.P({2,4,6,8}, B2:B5)");
model._set("C6", "=COVARIANCE.S({2,4,6,8}, B2:B5)");
model._set("C7", "=COVARIANCE.P({2,4,6,8}, {1,3,5,7})");
model._set("C8", "=COVARIANCE.S({2,4,6,8}, {1,3,5,7})");
model.evaluate();
assert_eq!(model._get_text("C1"), *"5");
assert_eq!(model._get_text("C2"), *"6.666666667");
}

View File

@@ -0,0 +1,50 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn arguments_smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ()");
model._set("A2", "=DEVSQ(1, 2, 3)");
model._set("A3", "=DEVSQ(1, )");
model._set("A4", "=DEVSQ(1, , 3)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"#ERROR!");
assert_eq!(model._get_text("A2"), *"2");
assert_eq!(model._get_text("A3"), *"0");
assert_eq!(model._get_text("A4"), *"2");
}
#[test]
fn ranges() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ(A2:A8)");
model._set("A2", "4");
model._set("A3", "5");
model._set("A4", "8");
model._set("A5", "7");
model._set("A6", "11");
model._set("A7", "4");
model._set("A8", "3");
model.evaluate();
assert_eq!(model._get_text("A1"), *"48");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("A1", "=DEVSQ({1, 2, 3})");
model._set("A2", "=DEVSQ({1; 2; 3})");
model._set("A3", "=DEVSQ({1, 2; 3, 4})");
model._set("A4", "=DEVSQ({1, 2; 3, 4; 5, 6})");
model.evaluate();
assert_eq!(model._get_text("A1"), *"2");
assert_eq!(model._get_text("A2"), *"2");
assert_eq!(model._get_text("A3"), *"5");
assert_eq!(model._get_text("A4"), *"17.5");
}

View File

@@ -0,0 +1,32 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_expon_dist_smoke() {
let mut model = new_empty_model();
// λ = 1, x = 0.5
// CDF = 1 - e^-0.5 ≈ 0.393469340
// PDF = e^-0.5 ≈ 0.606530660
model._set("A1", "=EXPON.DIST(0.5, 1, TRUE)");
model._set("A2", "=EXPON.DIST(0.5, 1, FALSE)");
// Wrong number of args
model._set("A3", "=EXPON.DIST(0.5, 1)");
model._set("A4", "=EXPON.DIST(0.5, 1, TRUE, FALSE)");
// Domain errors
model._set("A5", "=EXPON.DIST(-1, 1, TRUE)"); // x < 0
model._set("A6", "=EXPON.DIST(0.5, 0, TRUE)"); // lambda <= 0
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.39346934");
assert_eq!(model._get_text("A2"), *"0.60653066");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,75 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_f_dist_sanity() {
let mut model = new_empty_model();
model._set("A1", "=F.DIST(15, 6, 4, TRUE)");
model._set("A2", "=F.DIST(15, 6, 4, FALSE)");
model._set("A3", "=F.DIST(15, 6, 4)");
model._set("A4", "=F.DIST(15, 6, 4, TRUE, FALSE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.989741952");
assert_eq!(model._get_text("A2"), *"0.001271447");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}
#[test]
fn test_fn_f_dist_rt_sanity() {
let mut model = new_empty_model();
// Valid call
model._set("A1", "=F.DIST.RT(15, 6, 4)");
// Too few args
model._set("A2", "=F.DIST.RT(15, 6)");
// Too many args
model._set("A3", "=F.DIST.RT(15, 6, 4, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.010258048");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}
#[test]
fn test_fn_f_inv_sanity() {
let mut model = new_empty_model();
// Valid call: left-tail inverse
model._set("A1", "=F.INV(0.9897419523940, 6, 4)");
// Too many args
model._set("A2", "=F.INV(0.5, 6, 4, 2)");
// Too few args
model._set("A3", "=F.INV(0.5, 6)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"15");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}
#[test]
fn test_fn_f_inv_rt_sanity() {
let mut model = new_empty_model();
// Valid call: left-tail inverse
model._set("A1", "=F.INV.RT(0.0102580476059808, 6, 4)");
// Too many args
model._set("A2", "=F.INV.RT(0.5, 6, 4, 2)");
// Too few args
model._set("A3", "=F.INV.RT(0.5, 6)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"15");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
}

View File

@@ -0,0 +1,35 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_f_test_sanity() {
let mut model = new_empty_model();
// Valid call
model._set("A1", "=F.TEST(A2:A7, B2:B7)");
model._set("A2", "9");
model._set("A3", "12");
model._set("A4", "14");
model._set("A5", "16");
model._set("A6", "18");
model._set("A7", "20");
model._set("B2", "11");
model._set("B3", "10");
model._set("B4", "15");
model._set("B5", "17");
model._set("B6", "19");
model._set("B7", "21");
// Too few args
model._set("A8", "=F.TEST(A2:A7)");
// Too many args
model._set("A9", "=F.TEST(A2:A7, B2:B7, C2:C7)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.859284302");
assert_eq!(model._get_text("A8"), *"#ERROR!");
assert_eq!(model._get_text("A9"), *"#ERROR!");
}

View File

@@ -0,0 +1,53 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_fisher_smoke() {
let mut model = new_empty_model();
// Valid inputs
model._set("A1", "=FISHER(0.1)");
model._set("A2", "=FISHER(-0.5)");
model._set("A3", "=FISHER(0.8)");
// Domain errors: x <= -1 or x >= 1 -> #NUM!
model._set("A4", "=FISHER(1)");
model._set("A5", "=FISHER(-1)");
model._set("A6", "=FISHER(2)");
// Wrong number of arguments -> #ERROR!
model._set("A7", "=FISHER(0.1, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.100335348");
assert_eq!(model._get_text("A2"), *"-0.549306144");
assert_eq!(model._get_text("A3"), *"1.098612289");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#ERROR!");
}
#[test]
fn test_fn_fisher_inv_smoke() {
let mut model = new_empty_model();
// Valid inputs
model._set("A1", "=FISHERINV(-1.5)");
model._set("A2", "=FISHERINV(0.5)");
model._set("A3", "=FISHERINV(2)");
// Wrong number of arguments -> #ERROR!
model._set("A4", "=FISHERINV(0.5, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"-0.905148254");
assert_eq!(model._get_text("A2"), *"0.462117157");
assert_eq!(model._get_text("A3"), *"0.96402758");
assert_eq!(model._get_text("A4"), *"#ERROR!");
}

View File

@@ -0,0 +1,35 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_gauss_smoke() {
let mut model = new_empty_model();
model._set("A1", "=GAUSS(-3)");
model._set("A2", "=GAUSS(-2.3)");
model._set("A3", "=GAUSS(-1.7)");
model._set("A4", "=GAUSS(0)");
model._set("A5", "=GAUSS(0.5)");
model._set("A6", "=GAUSS(1)");
model._set("A7", "=GAUSS(1.3)");
model._set("A8", "=GAUSS(3)");
model._set("A9", "=GAUSS(4)");
model._set("G6", "=GAUSS()");
model._set("G7", "=GAUSS(1, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"-0.498650102");
assert_eq!(model._get_text("A2"), *"-0.48927589");
assert_eq!(model._get_text("A3"), *"-0.455434537");
assert_eq!(model._get_text("A4"), *"0");
assert_eq!(model._get_text("A5"), *"0.191462461");
assert_eq!(model._get_text("A6"), *"0.341344746");
assert_eq!(model._get_text("A7"), *"0.403199515");
assert_eq!(model._get_text("A8"), *"0.498650102");
assert_eq!(model._get_text("A9"), *"0.499968329");
assert_eq!(model._get_text("G6"), *"#ERROR!");
assert_eq!(model._get_text("G7"), *"#ERROR!");
}

View File

@@ -0,0 +1,42 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_hyp_geom_dist_smoke() {
let mut model = new_empty_model();
// Valid: PDF (non-cumulative)
model._set("A1", "=HYPGEOM.DIST(1, 4, 12, 20, FALSE)");
// Valid: CDF (cumulative)
model._set("A2", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=HYPGEOM.DIST(1, 4, 12, 20)");
model._set("A4", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE, FALSE)");
// Domain errors:
// sample_s > number_sample -> #NUM!
model._set("A5", "=HYPGEOM.DIST(5, 4, 12, 20, TRUE)");
// population_s > number_pop -> #NUM!
model._set("A6", "=HYPGEOM.DIST(1, 4, 25, 20, TRUE)");
// number_sample > number_pop -> #NUM!
model._set("A7", "=HYPGEOM.DIST(1, 25, 12, 20, TRUE)");
model.evaluate();
// PDF: P(X = 1)
assert_eq!(model._get_text("A1"), *"0.13869969");
// CDF: P(X <= 1)
assert_eq!(model._get_text("A2"), *"0.153147575");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}

View File

@@ -0,0 +1,61 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_log_norm_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF
model._set("A1", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE)");
model._set("A2", "=LOGNORM.DIST(4, 3.5, 1.2, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=LOGNORM.DIST(4, 3.5, 1.2)");
model._set("A4", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE, FALSE)");
// Domain errors:
// x <= 0 -> #NUM!
model._set("A5", "=LOGNORM.DIST(0, 3.5, 1.2, TRUE)");
// std_dev <= 0 -> #NUM!
model._set("A6", "=LOGNORM.DIST(4, 3.5, 0, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.039083556");
assert_eq!(model._get_text("A2"), *"0.017617597");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_log_norm_inv_smoke() {
let mut model = new_empty_model();
// Valid call
model._set("A1", "=LOGNORM.INV(0.5, 3.5, 1.2)");
// Wrong number of arguments -> #ERROR!
model._set("A2", "=LOGNORM.INV(0.5, 3.5)");
model._set("A3", "=LOGNORM.INV(0.5, 3.5, 1.2, 0)");
// Domain errors:
// probability <= 0 or >= 1 -> #NUM!
model._set("A4", "=LOGNORM.INV(0, 3.5, 1.2)");
model._set("A5", "=LOGNORM.INV(1, 3.5, 1.2)");
// std_dev <= 0 -> #NUM!
model._set("A6", "=LOGNORM.INV(0.5, 3.5, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"33.115451959");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,119 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_norm_dist_smoke() {
let mut model = new_empty_model();
// Valid: standard normal as a special case
model._set("A1", "=NORM.DIST(1, 0, 1, TRUE)");
model._set("A2", "=NORM.DIST(1, 0, 1, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.DIST(1, 0, 1)");
model._set("A4", "=NORM.DIST(1, 0, 1, TRUE, FALSE)");
// Domain errors: standard_dev <= 0 -> #NUM!
model._set("A5", "=NORM.DIST(1, 0, 0, TRUE)");
model._set("A6", "=NORM.DIST(1, 0, -1, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.841344746");
assert_eq!(model._get_text("A2"), *"0.241970725");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_norm_inv_smoke() {
let mut model = new_empty_model();
// Valid: median of standard normal
model._set("A1", "=NORM.INV(0.5, 0, 1)");
// Wrong number of arguments -> #ERROR!
model._set("A2", "=NORM.INV(0.5, 0)");
model._set("A3", "=NORM.INV(0.5, 0, 1, 0)");
// Domain errors:
// probability <= 0 or >= 1 -> #NUM!
model._set("A4", "=NORM.INV(0, 0, 1)");
model._set("A5", "=NORM.INV(1, 0, 1)");
// standard_dev <= 0 -> #NUM!
model._set("A6", "=NORM.INV(0.5, 0, 0)");
model._set("A7", "=NORM.INV(0.7, 0.2, 1)");
model._set("A8", "=NORM.INV(0.7, 0.2, 5)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"0.724400513");
assert_eq!(model._get_text("A8"), *"2.822002564");
}
#[test]
fn test_fn_norm_s_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF at z = 0
model._set("A1", "=NORM.S.DIST(0, TRUE)");
model._set("A2", "=NORM.S.DIST(0, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.DIST(0)");
model._set("A4", "=NORM.S.DIST(0, TRUE, FALSE)");
model._set("A5", "=NORM.S.DIST(0.2, FALSE)");
model._set("A6", "=NORM.S.DIST(2.2, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.5");
assert_eq!(model._get_text("A2"), *"0.39894228");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"0.391042694");
assert_eq!(model._get_text("A6"), *"0.986096552");
}
#[test]
fn test_fn_norm_s_inv_smoke() {
let mut model = new_empty_model();
// Valid: symmetric points
model._set("A1", "=NORM.S.INV(0.5)");
model._set("A2", "=NORM.S.INV(0.841344746)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.INV()");
model._set("A4", "=NORM.S.INV(0.5, 0)");
// Domain errors: probability <= 0 or >= 1 -> #NUM!
model._set("A5", "=NORM.S.INV(0)");
model._set("A6", "=NORM.S.INV(1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
// Approximately 1
assert_eq!(model._get_text("A2"), *"1");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}

View File

@@ -0,0 +1,31 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_chisq_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "48");
model._set("A3", "32");
model._set("A4", "12");
model._set("A5", "1");
model._set("A6", "'13");
model._set("A7", "TRUE");
model._set("A8", "1");
model._set("A9", "13");
model._set("A10", "15");
model._set("B2", "55");
model._set("B3", "34");
model._set("B4", "13");
model._set("B5", "blah");
model._set("B6", "13");
model._set("B7", "1");
model._set("B8", "TRUE");
model._set("B9", "'14");
model._set("B10", "16");
model._set("C1", "=PEARSON(A2:A10, B2:B10)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.998381439");
}

View File

@@ -0,0 +1,26 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_phi_smoke() {
let mut model = new_empty_model();
model._set("A1", "=PHI(0)");
model._set("A2", "=PHI(1)");
model._set("A3", "=PHI(-1)");
// Wrong number of arguments -> #ERROR!
model._set("A4", "=PHI()");
model._set("A5", "=PHI(0, 1)");
model.evaluate();
// Standard values
assert_eq!(model._get_text("A1"), *"0.39894228");
assert_eq!(model._get_text("A2"), *"0.241970725");
assert_eq!(model._get_text("A3"), *"0.241970725");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_poisson_dist_smoke() {
let mut model = new_empty_model();
// λ = 2, x = 3
// P(X = 3) ≈ 0.180447045
// P(X <= 3) ≈ 0.857123461
model._set("A1", "=POISSON.DIST(3, 2, FALSE)");
model._set("A2", "=POISSON.DIST(3, 2, TRUE)");
// Wrong arg count
model._set("A3", "=POISSON.DIST(3, 2)");
model._set("A4", "=POISSON.DIST(3, 2, TRUE, FALSE)");
// Domain errors
model._set("A5", "=POISSON.DIST(-1, 2, TRUE)"); // x < 0
model._set("A6", "=POISSON.DIST(3, -2, TRUE)"); // mean < 0
// λ = 0 special cases
model._set("A7", "=POISSON.DIST(0, 0, FALSE)"); // 1
model._set("A8", "=POISSON.DIST(1, 0, FALSE)"); // 0
model._set("A9", "=POISSON.DIST(5, 0, TRUE)"); // 1
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.180447044");
assert_eq!(model._get_text("A2"), *"0.85712346");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"1");
assert_eq!(model._get_text("A8"), *"0");
assert_eq!(model._get_text("A9"), *"1");
}

View File

@@ -0,0 +1,46 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=STDEV.P(A2:A15)");
model._set("B2", "=STDEV.S(A2:A15)");
model._set("B3", "=STDEVA(A2:A15)");
model._set("B4", "=STDEVPA(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"8.483071378");
assert_eq!(model._get_text("B2"), *"8.941942369");
assert_eq!(model._get_text("B3"), *"15.499955689");
assert_eq!(model._get_text("B4"), *"14.936131032");
}

View File

@@ -0,0 +1,160 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_t_dist_smoke() {
let mut model = new_empty_model();
// Valid: cumulative (left-tail CDF)
model._set("A1", "=T.DIST(2, 10, TRUE)");
// Valid: probability density function (PDF)
model._set("B1", "=T.DIST(2, 10, FALSE)");
// Wrong number of arguments
model._set("A2", "=T.DIST(2, 10)");
model._set("A3", "=T.DIST(2, 10, TRUE, FALSE)");
// Domain error: df < 1 -> #NUM!
model._set("A4", "=T.DIST(2, 0, TRUE)");
model._set("A5", "=T.DIST(2, -1, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.963305983");
assert_eq!(model._get_text("B1"), *"0.061145766");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
}
#[test]
fn test_fn_t_dist_rt_smoke() {
let mut model = new_empty_model();
// Valid: right tail probability
model._set("A1", "=T.DIST.RT(2, 10)");
// Wrong number of arguments
model._set("A2", "=T.DIST.RT(2)");
model._set("A3", "=T.DIST.RT(2, 10, TRUE)");
// Domain error: df < 1
model._set("A4", "=T.DIST.RT(2, 0)");
model._set("A5", "=T.DIST.RT(2, -1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.036694017");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
}
#[test]
fn test_fn_t_dist_2t_smoke() {
let mut model = new_empty_model();
// Valid: two-tailed probability
model._set("A1", "=T.DIST.2T(2, 10)");
// In the limit case of x = 0, the two-tailed probability is 1.0
model._set("A4", "=T.DIST.2T(0, 10)");
// Wrong number of arguments
model._set("A2", "=T.DIST.2T(2)");
model._set("A3", "=T.DIST.2T(2, 10, TRUE)");
// Domain errors:
// x < 0 -> #NUM!
model._set("A5", "=T.DIST.2T(-0.001, 10)");
// df < 1 -> #NUM!
model._set("A6", "=T.DIST.2T(2, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.073388035");
assert_eq!(model._get_text("A4"), *"1");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_t_inv_smoke() {
let mut model = new_empty_model();
// Valid: upper and lower tail
model._set("A1", "=T.INV(0.95, 10)");
model._set("A2", "=T.INV(0.05, 10)");
// limit case:
model._set("B2", "=T.INV(0.95, 1)");
// Wrong number of arguments
model._set("A3", "=T.INV(0.95)");
model._set("A4", "=T.INV(0.95, 10, 1)");
// Domain errors:
// p <= 0 or >= 1
model._set("A5", "=T.INV(0, 10)");
model._set("A6", "=T.INV(1, 10)");
// df < 1
model._set("A7", "=T.INV(0.95, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"1.812461123");
assert_eq!(model._get_text("A2"), *"-1.812461123");
assert_eq!(model._get_text("B2"), *"6.313751515");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
}
#[test]
fn test_fn_t_inv_2t_smoke() {
let mut model = new_empty_model();
// Valid: two-tailed critical values
model._set("A1", "=T.INV.2T(0.1, 10)");
model._set("A2", "=T.INV.2T(0.05, 10)");
// p = 1 should give t = 0 (both tails outside are 1.0, so cut at the mean)
model._set("A3", "=T.INV.2T(1, 10)");
model._set("A7", "=T.INV.2T(1.5, 10)");
// Wrong number of arguments
model._set("A4", "=T.INV.2T(0.1)");
model._set("A5", "=T.INV.2T(0.1, 10, 1)");
// Domain errors:
// p <= 0 or p > 1
model._set("A6", "=T.INV.2T(0, 10)");
// df < 1
model._set("A8", "=T.INV.2T(0.1, 0)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"1.812461123");
assert_eq!(model._get_text("A2"), *"2.228138852");
assert_eq!(model._get_text("A3"), *"0");
// NB: Excel returns -0.699812061 for T.INV.2T(1.5, 10)
// which seems inconsistent with its documented behavior
assert_eq!(model._get_text("A7"), *"#NUM!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A8"), *"#NUM!");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_t_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "3");
model._set("A3", "4");
model._set("A4", "5");
model._set("A5", "6");
model._set("A6", "10");
model._set("A7", "3");
model._set("A8", "2");
model._set("A9", "4");
model._set("A10", "7");
model._set("B2", "6");
model._set("B3", "19");
model._set("B4", "3");
model._set("B5", "2");
model._set("B6", "13");
model._set("B7", "4");
model._set("B8", "5");
model._set("B9", "17");
model._set("B10", "3");
model._set("C1", "=T.TEST(A2:A10, B2:B10, 1, 1)");
model._set("C2", "=T.TEST(A2:A10, B2:B10, 1, 2)");
model._set("C3", "=T.TEST(A2:A10, B2:B10, 1, 3)");
model._set("C4", "=T.TEST(A2:A10, B2:B10, 2, 1)");
model._set("C5", "=T.TEST(A2:A10, B2:B10, 2, 2)");
model._set("C6", "=T.TEST(A2:A10, B2:B10, 2, 3)");
model.evaluate();
assert_eq!(model._get_text("C1"), *"0.103836888");
assert_eq!(model._get_text("C2"), *"0.100244599");
assert_eq!(model._get_text("C3"), *"0.105360319");
assert_eq!(model._get_text("C4"), *"0.207673777");
assert_eq!(model._get_text("C5"), *"0.200489197");
assert_eq!(model._get_text("C6"), *"0.210720639");
}

View File

@@ -0,0 +1,46 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn smoke_test() {
let mut model = new_empty_model();
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"5.174505793");
assert_eq!(model._get_text("A2"), *"5.589105048");
}
#[test]
fn numbers() {
let mut model = new_empty_model();
model._set("A2", "24");
model._set("A3", "25");
model._set("A4", "27");
model._set("A5", "23");
model._set("A6", "45");
model._set("A7", "23.5");
model._set("A8", "34");
model._set("A9", "23");
model._set("A10", "23");
model._set("A11", "TRUE");
model._set("A12", "'23");
model._set("A13", "Text");
model._set("A14", "FALSE");
model._set("A15", "45");
model._set("B1", "=VAR.P(A2:A15)");
model._set("B2", "=VAR.S(A2:A15)");
model._set("B3", "=VARA(A2:A15)");
model._set("B4", "=VARPA(A2:A15)");
model.evaluate();
assert_eq!(model._get_text("B1"), *"71.9625");
assert_eq!(model._get_text("B2"), *"79.958333333");
assert_eq!(model._get_text("B3"), *"240.248626374");
assert_eq!(model._get_text("B4"), *"223.088010204");
}

View File

@@ -0,0 +1,41 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_weibull_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF for x = 1, alpha = 2, beta = 1
model._set("A1", "=WEIBULL.DIST(1, 2, 1, TRUE)");
model._set("A2", "=WEIBULL.DIST(1, 2, 1, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=WEIBULL.DIST(1, 2, 1)");
model._set("A4", "=WEIBULL.DIST(1, 2, 1, TRUE, FALSE)");
// Domain errors:
// x < 0 -> #NUM!
model._set("A5", "=WEIBULL.DIST(-1, 2, 1, TRUE)");
// alpha <= 0 -> #NUM!
model._set("A6", "=WEIBULL.DIST(1, 0, 1, TRUE)");
model._set("A7", "=WEIBULL.DIST(1, -1, 1, TRUE)");
// beta <= 0 -> #NUM!
model._set("A8", "=WEIBULL.DIST(1, 2, 0, TRUE)");
model._set("A9", "=WEIBULL.DIST(1, 2, -1, TRUE)");
model.evaluate();
// 1 - e^-1
assert_eq!(model._get_text("A1"), *"0.632120559");
// 2 * e^-1
assert_eq!(model._get_text("A2"), *"0.735758882");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"#NUM!");
assert_eq!(model._get_text("A8"), *"#NUM!");
assert_eq!(model._get_text("A9"), *"#NUM!");
}

View File

@@ -0,0 +1,36 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_z_test_smoke() {
let mut model = new_empty_model();
model._set("A2", "3");
model._set("A3", "6");
model._set("A4", "7");
model._set("A5", "8");
model._set("A6", "6");
model._set("A7", "5");
model._set("A8", "4");
model._set("A9", "2");
model._set("A10", "1");
model._set("A11", "9");
model._set("G1", "=Z.TEST(A2:A11, 4)");
model._set("G2", "=Z.TEST(A2:A11, 6)");
model.evaluate();
assert_eq!(model._get_text("G1"), *"0.090574197");
assert_eq!(model._get_text("G2"), *"0.863043389");
}
#[test]
fn arrays() {
let mut model = new_empty_model();
model._set("D1", "=Z.TEST({5,2,3,4}, 4, 123)");
model._set("D2", "=Z.TEST({5,2,3,4}, 4)");
model.evaluate();
assert_eq!(model._get_text("D1"), *"0.503243397");
assert_eq!(model._get_text("D2"), *"0.780710987");
}

View File

@@ -6,8 +6,8 @@ use crate::test::util::new_empty_model;
fn arguments() {
let mut model = new_empty_model();
model._set("A1", "=ARABIC()");
model._set("A2", "=ARABIC(V)");
model._set("A3", "=ARABIC(V, 2)");
model._set("A2", "=ARABIC(\"V\")");
model._set("A3", "=ARABIC(\"V\", 2)");
model._set("A4", "=ROMAN()");
model._set("A5", "=ROMAN(5)");

View File

@@ -0,0 +1,35 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn arguments() {
let mut model = new_empty_model();
model._set("A1", "=CELL("address",A1)");
model._set("A2", "=CELL()");
model._set("A3", "=INFO("system")");
model._set("A4", "=INFO()");
model._set("A5", "=N(TRUE)");
model._set("A6", "=N()");
model._set("A7", "=N(1, 2)");
model._set("A8", "=SHEETS()");
model._set("A9", "=SHEETS(1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"$A$1");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#N/IMPL!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"1");
assert_eq!(model._get_text("A6"), *"#ERROR!");
assert_eq!(model._get_text("A7"), *"#ERROR!");
assert_eq!(model._get_text("A8"), *"1");
assert_eq!(model._get_text("A9"), *"#N/IMPL!");
}

View File

@@ -11,8 +11,8 @@ fn arguments() {
model._set("A4", "=COMBINA()");
model._set("A5", "=COMBIN(2)");
model._set("A6", "=COMBINA(2)");
model._set("A5", "=COMBIN(1, 2, 3)");
model._set("A6", "=COMBINA(1, 2, 3)");
model._set("A7", "=COMBIN(1, 2, 3)");
model._set("A8", "=COMBINA(1, 2, 3)");
model.evaluate();

123
base/src/test/test_floor.rs Normal file
View File

@@ -0,0 +1,123 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_floor_floating_point_precision() {
// This test specifically checks the floating-point precision bug fix
// Bug: FLOOR(7.1, 0.1) was returning 7.0 instead of 7.1
let mut model = new_empty_model();
// FLOOR tests
model._set("C5", "=FLOOR(7.1, 0.1)");
model._set("H7", "=FLOOR(-7.1, -0.1)");
// FLOOR.PRECISE tests
model._set("C53", "=FLOOR.PRECISE(7.1, 0.1)");
model._set("H53", "=FLOOR.PRECISE(7.1, -0.1)");
// FLOOR.MATH tests
model._set("C101", "=FLOOR.MATH(7.1, 0.1)");
model._set("H101", "=FLOOR.MATH(7.1, -0.1)");
model.evaluate();
// All should return 7.1
assert_eq!(model._get_text("C5"), *"7.1");
assert_eq!(model._get_text("H7"), *"-7.1");
assert_eq!(model._get_text("C53"), *"7.1");
assert_eq!(model._get_text("H53"), *"7.1");
assert_eq!(model._get_text("C101"), *"7.1");
assert_eq!(model._get_text("H101"), *"7.1");
}
#[test]
fn test_floor_additional_precision_cases() {
let mut model = new_empty_model();
model._set("A1", "=FLOOR(7.9, 0.1)");
model._set("A2", "=FLOOR(2.6, 0.5)");
model._set("A3", "=FLOOR(0.3, 0.1)"); // 0.1 + 0.2 type scenario
model.evaluate();
assert_eq!(model._get_text("A1"), *"7.9");
assert_eq!(model._get_text("A2"), *"2.5");
assert_eq!(model._get_text("A3"), *"0.3");
}
#[test]
fn test_floor_basic_cases() {
let mut model = new_empty_model();
model._set("A1", "=FLOOR(3.7, 2)");
model._set("A2", "=FLOOR(3.2, 1)");
model._set("A3", "=FLOOR(10, 3)");
model._set("A4", "=FLOOR(7, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"2");
assert_eq!(model._get_text("A2"), *"3");
assert_eq!(model._get_text("A3"), *"9");
assert_eq!(model._get_text("A4"), *"6");
}
#[test]
fn test_floor_negative_numbers() {
let mut model = new_empty_model();
// Both negative: rounds toward zero
model._set("A1", "=FLOOR(-2.5, -2)");
model._set("A2", "=FLOOR(-11, -3)");
// Negative number, positive significance: rounds away from zero
model._set("A3", "=FLOOR(-11, 3)");
model._set("A4", "=FLOOR(-2.5, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"-2");
assert_eq!(model._get_text("A2"), *"-9");
assert_eq!(model._get_text("A3"), *"-12");
assert_eq!(model._get_text("A4"), *"-4");
}
#[test]
fn test_floor_error_cases() {
let mut model = new_empty_model();
// Positive number with negative significance should error
model._set("A1", "=FLOOR(2.5, -2)");
model._set("A2", "=FLOOR(10, -3)");
// Division by zero
model._set("A3", "=FLOOR(5, 0)");
// Wrong number of arguments
model._set("A4", "=FLOOR(5)");
model._set("A5", "=FLOOR(5, 1, 1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"#NUM!");
assert_eq!(model._get_text("A2"), *"#NUM!");
assert_eq!(model._get_text("A3"), *"#DIV/0!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
}
#[test]
fn test_floor_edge_cases() {
let mut model = new_empty_model();
// Zero value
model._set("A1", "=FLOOR(0, 5)");
model._set("A2", "=FLOOR(0, 0)");
// Exact multiples
model._set("A3", "=FLOOR(10, 5)");
model._set("A4", "=FLOOR(9, 3)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
assert_eq!(model._get_text("A2"), *"0");
assert_eq!(model._get_text("A3"), *"10");
assert_eq!(model._get_text("A4"), *"9");
}

View File

@@ -7,8 +7,8 @@ fn datevalue_timevalue_arguments() {
let mut model = new_empty_model();
model._set("A1", "=DATEVALUE()");
model._set("A2", "=TIMEVALUE()");
model._set("A3", "=DATEVALUE("2000-01-01")")
model._set("A4", "=TIMEVALUE("12:00:00")")
model._set("A3", "=DATEVALUE(\"2000-01-01\")");
model._set("A4", "=TIMEVALUE(\"12:00:00\")");
model._set("A5", "=DATEVALUE(1,2)");
model._set("A6", "=TIMEVALUE(1,2)");
model.evaluate();
@@ -20,5 +20,3 @@ fn datevalue_timevalue_arguments() {
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#ERROR!");
}

View File

@@ -20,7 +20,6 @@ fn arguments() {
model._set("A11", "=INT(10.22, 1)");
model._set("A12", "=INT(10.22, 1, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"#ERROR!");
@@ -29,7 +28,7 @@ fn arguments() {
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"#ERROR!");
assert_eq!(model._get_text("A6"), *"10");
assert_eq!(model._get_text("A7"), *"10.2");
assert_eq!(model._get_text("A8"), *"#ERROR!");

View File

@@ -7,15 +7,24 @@ const TIMESTAMP_2023: i64 = 1679319865208;
#[test]
fn arguments() {
mock_time::set_mock_time(TIMESTAMP_2023);
let mut model = new_empty_model();
model._set("A1", "=NOW(1)");
model._set("A1", "=NOW(1, 1)");
model._set("A2", "=NOW(\"Europe/Berlin\")");
model._set("A3", "=NOW(\"faketimezone\")");
model.evaluate();
assert_eq!(
model._get_text("A1"),
"#ERROR!",
"NOW should not accept arguments"
"Wrong number of arguments"
);
assert_eq!(model._get_text("A2"), *"20/03/2023 14:44:25");
assert_eq!(
model._get_text("A3"),
"#VALUE!",
"Invalid timezone: faketimezone"
);
}

View File

@@ -0,0 +1,17 @@
#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn arguments() {
let mut model = new_empty_model();
model._set("A1", "=SUMSQ()");
model._set("A2", "=SUMSQ(2)");
model._set("A3", "=SUMSQ(1, 2)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"#ERROR!");
assert_eq!(model._get_text("A2"), *"4");
assert_eq!(model._get_text("A3"), *"5");
}

View File

@@ -11,7 +11,7 @@ You can track the progress in this [GitHub issue](https://github.com/ironcalc/Ir
| Function | Status | Documentation |
| ---------- | ---------------------------------------------- | ------------- |
| CELL | <Badge type="info" text="Not implemented yet" /> | |
| CELL | <Badge type="tip" text="Available" /> | |
| ERROR.TYPE | <Badge type="tip" text="Available" /> | |
| INFO | <Badge type="info" text="Not implemented yet" /> | |
| ISBLANK | <Badge type="tip" text="Available" /> | |
@@ -20,7 +20,7 @@ You can track the progress in this [GitHub issue](https://github.com/ironcalc/Ir
| ISEVEN | <Badge type="tip" text="Available" /> | |
| ISFORMULA | <Badge type="tip" text="Available" /> | |
| ISLOGICAL | <Badge type="tip" text="Available" /> | |
| ISNA | <Badge type="info" text="Not implemented yet" /> | |
| ISNA | <Badge type="tip" text="Available" /> | |
| ISNONTEXT | <Badge type="tip" text="Available" /> | |
| ISNUMBER | <Badge type="tip" text="Available" /> | |
| ISODD | <Badge type="tip" text="Available" /> | |
@@ -30,5 +30,5 @@ You can track the progress in this [GitHub issue](https://github.com/ironcalc/Ir
| N | <Badge type="info" text="Not implemented yet" /> | |
| NA | <Badge type="tip" text="Available" /> | |
| SHEET | <Badge type="tip" text="Available" /> | |
| SHEETS | <Badge type="info" text="Not implemented yet" /> | |
| SHEETS | <Badge type="tip" text="Available" /> | |
| TYPE | <Badge type="tip" text="Available" /> | |

View File

@@ -7,6 +7,5 @@ lang: en-US
# CELL
::: warning
🚧 This function is not yet available in IronCalc.
[Follow development here](https://github.com/ironcalc/IronCalc/labels/Functions)
🚧 This function is implemented but currently lacks detailed documentation. For guidance, you may refer to the equivalent functionality in [Microsoft Excel documentation](https://support.microsoft.com/en-us/office/excel-functions-by-category-5f91f4e9-7b42-46d2-9bd1-63f26a86c0eb).
:::

View File

@@ -7,6 +7,5 @@ lang: en-US
# N
::: warning
🚧 This function is not yet available in IronCalc.
[Follow development here](https://github.com/ironcalc/IronCalc/labels/Functions)
🚧 This function is implemented but currently lacks detailed documentation. For guidance, you may refer to the equivalent functionality in [Microsoft Excel documentation](https://support.microsoft.com/en-us/office/excel-functions-by-category-5f91f4e9-7b42-46d2-9bd1-63f26a86c0eb).
:::

View File

@@ -7,6 +7,5 @@ lang: en-US
# SHEETS
::: warning
🚧 This function is not yet available in IronCalc.
[Follow development here](https://github.com/ironcalc/IronCalc/labels/Functions)
🚧 This function is implemented but currently lacks detailed documentation. For guidance, you may refer to the equivalent functionality in [Microsoft Excel documentation](https://support.microsoft.com/en-us/office/excel-functions-by-category-5f91f4e9-7b42-46d2-9bd1-63f26a86c0eb).
:::

View File

@@ -6,26 +6,33 @@ lang: en-US
# COLUMN function
## Overview
The COLUMN Function in IronCalc is a lookup & reference formula that is used to query and return the column number of a referenced Column or Cell.
The COLUMN Function in IronCalc is a lookup & reference formula that is used to query and return the column number of a referenced column or cell.
## Usage
### Syntax
**COLUMN(<span title="Reference" style="color:#1E88E5">reference</span>) => <span title="Number" style="color:#1E88E5">column</span>**
### Argument descriptions
* *reference* ([cell](/features/value-types#references), [optional](/features/optional-arguments.md)). The number of the cell you wish to reference the column number of.
* *reference* ([cell](/features/value-types#references), [optional](/features/optional-arguments.md)). The cell, column, range, or [Named Range](/web-application/name-manager.html) for which you wish to find the column number.
### Additional guidance
* When referencing a range of cells, only the column number of the left most cell will be returned.
* When referencing a range of cells, only the column number of the leftmost cell will be returned.
* You are also able to reference complete columns instead of individual cells.
* When using a Named Range as a reference, the reference is not case sensitive.
* IronCalc supports the use of both *Absolute* ($A$1) and *Relative* (A1) references.
* Cross-sheet references are also supported.
### Returned value
COLUMN returns the [number](/features/value-types#numbers) of the specific cell or column which is being referenced.
COLUMN returns the [number](/features/value-types#numbers) of the specific cell or column which is being referenced. If no reference is included, the column number of the cell where the formula is entered will be returned.
### Error conditions
* IronCalc currently does not support the referencing of cells with names.
* A [#NAME?](/features/error-types.html#name) error is returned if a Named Range being referenced is deleted.
* A [#REF!](/features/error-types.html#ref) error is returned if a cell being referenced is deleted.
* A [#VALUE!](/features/error-types.html#value) error is returned if a column being referenced is deleted.
## Details
The COLUMN Function can only be used to display the correlating number of a single column within a Sheet. If you wish to show the number of columns used within a specific range, you can use the COLUMNS Function.
The COLUMN Function can only be used to display the correlating number of a single column within a Sheet. If you wish to show the number of columns used within a specific range, you can use the [COLUMNS](/functions/lookup_and_reference/columns) Function.
## Examples
### No Cell Reference
When no cell reference is made, the formula uses **=COLUMN()**. This will then output the column number of the cell where the formula is placed.<br><br>For example, if the formula is placed in cell A1, then "1" will be displayed.
When no cell reference is made, the formula uses **=COLUMN()**. This will output the column number of the cell where the formula is entered.<br><br>For example, if the formula is placed in cell A1, then "1" will be displayed.
### With Cell Reference
When a cell reference is made, the formula uses **=COLUMN([Referenced Cell])**. This will then output the column number of the referenced cell, regardless of where the formula is placed in the sheet.<br><br>For example, if the cell B1 is the referenced cell, "2" will be the output of the formula no matter where it is placed in the sheet.<br><br>**Note:** references do not always have to be specific cells, you can also reference complete columns. For example, **=COLUMN(B:B)** would also result in an output of "2".
When a cell reference is made, the formula uses **=COLUMN(<span title="Reference" style="color:#1E88E5">Referenced Cell</span>)**. This will then output the column number of the referenced cell, regardless of where the formula is placed in the sheet.<br><br>For example, if B1 is the referenced cell, then "2" will be the output of the formula, regardless of where the formula is placed in the sheet.<br><br>**Note:** references do not have to be specific cells, you can also reference complete columns. For example, **=COLUMN(B:B)** would also result in an output of "2".
### Range References
The COLUMN function can also be used to reference a range of Cells or Columns. In this case only the most left-hand column will be the resulting output.<br><br>For example, **=COLUMN(A1:J1)** will result in the ouput of "1".
The COLUMN function can also be used to reference a range of cells or columns. In this case only the leftmost column will be the resulting output.<br><br>For example, **=COLUMN(A1:J1)** will result in the output of "1".
## Links
* Visit Microsoft Excel's [Column function](https://support.microsoft.com/en-us/office/column-function-44e8c754-711c-4df3-9da4-47a55042554b) page.
* Both [Google Sheets](https://support.google.com/docs/answer/3093373) and [LibreOffice Calc](https://wiki.documentfoundation.org/Documentation/Calc_Functions/COLUMN) provide versions of the COLUMN function.

View File

@@ -86,7 +86,7 @@ You can track the progress in this [GitHub issue](https://github.com/ironcalc/Ir
| SUMIF | <Badge type="tip" text="Available" /> | |
| SUMIFS | <Badge type="tip" text="Available" /> | |
| SUMPRODUCT | <Badge type="info" text="Not implemented yet" /> | |
| SUMSQ | <Badge type="info" text="Not implemented yet" /> | |
| SUMSQ | <Badge type="tip" text="Available" /> | |
| SUMX2MY2 | <Badge type="info" text="Not implemented yet" /> | |
| SUMX2PY2 | <Badge type="info" text="Not implemented yet" /> | |
| SUMXMY2 | <Badge type="info" text="Not implemented yet" /> | |

View File

@@ -7,6 +7,5 @@ lang: en-US
# SUMSQ
::: warning
🚧 This function is not yet available in IronCalc.
[Follow development here](https://github.com/ironcalc/IronCalc/labels/Functions)
🚧 This function is implemented but currently lacks detailed documentation. For guidance, you may refer to the equivalent functionality in [Microsoft Excel documentation](https://support.microsoft.com/en-us/office/excel-functions-by-category-5f91f4e9-7b42-46d2-9bd1-63f26a86c0eb).
:::

View File

@@ -1,5 +1,7 @@
import type { Model } from "@ironcalc/wasm";
import { styled } from "@mui/material";
import { ChevronDown } from "lucide-react";
import { useState } from "react";
import { Fx } from "../../icons";
import { theme } from "../../theme";
import { FORMULA_BAR_HEIGHT } from "../constants";
@@ -9,6 +11,7 @@ import {
ROW_HEIGH_SCALE,
} from "../WorksheetCanvas/constants";
import type { WorkbookState } from "../workbookState";
import FormulaBarMenu from "./FormulaBarMenu";
type FormulaBarProps = {
cellAddress: string;
@@ -17,6 +20,8 @@ type FormulaBarProps = {
workbookState: WorkbookState;
onChange: () => void;
onTextUpdated: () => void;
openDrawer: () => void;
canEdit: boolean;
};
function FormulaBar(properties: FormulaBarProps) {
@@ -28,10 +33,27 @@ function FormulaBar(properties: FormulaBarProps) {
onTextUpdated,
workbookState,
} = properties;
const [isMenuOpen, setIsMenuOpen] = useState(false);
const handleMenuOpenChange = (isOpen: boolean): void => {
setIsMenuOpen(isOpen);
};
return (
<Container>
<AddressContainer>
<CellBarAddress>{cellAddress}</CellBarAddress>
<AddressContainer $active={isMenuOpen}>
<FormulaBarMenu
onMenuOpenChange={handleMenuOpenChange}
openDrawer={properties.openDrawer}
canEdit={properties.canEdit}
model={model}
onUpdate={onChange}
>
<CellBarAddress>{cellAddress}</CellBarAddress>
<StyledIcon>
<ChevronDown size={16} />
</StyledIcon>
</FormulaBarMenu>
</AddressContainer>
<Divider />
<FormulaContainer>
@@ -101,7 +123,7 @@ const Divider = styled("div")`
background-color: ${theme.palette.grey["300"]};
min-width: 1px;
height: 16px;
margin: 0px 16px;
margin: 0px 16px 0px 8px;
`;
const FormulaContainer = styled("div")`
@@ -121,22 +143,46 @@ const Container = styled("div")`
background: ${(properties): string =>
properties.theme.palette.background.default};
height: ${FORMULA_BAR_HEIGHT}px;
border-top: 1px solid ${theme.palette.grey["300"]};
`;
const AddressContainer = styled("div")`
padding-left: 16px;
const AddressContainer = styled("div")<{ $active?: boolean }>`
color: ${theme.palette.common.black};
font-style: normal;
font-weight: normal;
font-size: 12px;
display: flex;
font-weight: 600;
flex-grow: row;
align-items: center;
gap: 2px;
border-radius: 4px;
margin-left: 8px;
cursor: pointer;
background-color: ${(props) =>
props.$active ? theme.palette.action.selected : "transparent"};
&:hover {
background-color: ${(props) =>
props.$active ? theme.palette.action.selected : theme.palette.grey["100"]};
}
`;
const CellBarAddress = styled("div")`
width: 100%;
text-align: "center";
box-sizing: border-box;
height: 24px;
display: flex;
align-items: center;
justify-content: center;
text-align: center;
padding-left: 8px;
background-color: transparent;
`;
const StyledIcon = styled("div")`
display: flex;
align-items: center;
justify-content: center;
padding: 4px 2px;
background-color: transparent;
`;
const EditorWrapper = styled("div")`

View File

@@ -0,0 +1,170 @@
import type { Model } from "@ironcalc/wasm";
import { Menu, MenuItem, styled } from "@mui/material";
import { Tag } from "lucide-react";
import { useCallback, useRef, useState } from "react";
import { useTranslation } from "react-i18next";
import { theme } from "../../theme";
import { parseRangeInSheet } from "../Editor/util";
type FormulaBarMenuProps = {
children: React.ReactNode;
onMenuOpenChange: (isOpen: boolean) => void;
openDrawer: () => void;
canEdit: boolean;
model: Model;
onUpdate: () => void;
};
const FormulaBarMenu = (properties: FormulaBarMenuProps) => {
const { t } = useTranslation();
const [isMenuOpen, setMenuOpen] = useState(false);
const anchorElement = useRef<HTMLDivElement>(null);
const handleMenuOpen = useCallback((): void => {
setMenuOpen(true);
properties.onMenuOpenChange(true);
}, [properties.onMenuOpenChange]);
const handleMenuClose = useCallback((): void => {
setMenuOpen(false);
properties.onMenuOpenChange(false);
}, [properties.onMenuOpenChange]);
const definedNameList = properties.model.getDefinedNameList();
return (
<>
<ChildrenWrapper onClick={handleMenuOpen} ref={anchorElement}>
{properties.children}
</ChildrenWrapper>
<StyledMenu
open={isMenuOpen}
onClose={handleMenuClose}
anchorEl={anchorElement.current}
marginThreshold={0}
anchorOrigin={{
vertical: "bottom",
horizontal: "left",
}}
transformOrigin={{
vertical: "top",
horizontal: "left",
}}
>
{definedNameList.length > 0 ? (
<>
{definedNameList.map((definedName) => {
return (
<MenuItemWrapper
key={`${definedName.name}-${definedName.scope}`}
disableRipple
onClick={() => {
// select the area corresponding to the defined name
const formula = definedName.formula;
const range = parseRangeInSheet(properties.model, formula);
if (range) {
const [
sheetIndex,
rowStart,
columnStart,
rowEnd,
columnEnd,
] = range;
properties.model.setSelectedSheet(sheetIndex);
properties.model.setSelectedCell(rowStart, columnStart);
properties.model.setSelectedRange(
rowStart,
columnStart,
rowEnd,
columnEnd,
);
}
properties.onUpdate();
handleMenuClose();
}}
>
<Tag />
<MenuItemText>{definedName.name}</MenuItemText>
<MenuItemExample>{definedName.formula}</MenuItemExample>
</MenuItemWrapper>
);
})}
<MenuDivider />
</>
) : null}
<MenuItemWrapper
onClick={() => {
properties.openDrawer();
handleMenuClose();
}}
disabled={!properties.canEdit}
disableRipple
>
<MenuItemText>{t("formula_bar.manage_named_ranges")}</MenuItemText>
</MenuItemWrapper>
</StyledMenu>
</>
);
};
const StyledMenu = styled(Menu)`
top: 4px;
min-width: 260px;
max-width: 460px;
& .MuiPaper-root {
border-radius: 8px;
padding: 4px 0px;
margin-left: -4px;
}
& .MuiList-root {
padding: 0;
}
`;
const MenuItemWrapper = styled(MenuItem)`
display: flex;
align-items: center;
justify-content: space-between;
font-size: 12px;
gap: 8px;
width: calc(100% - 8px);
min-width: 172px;
margin: 0px 4px;
border-radius: 4px;
padding: 8px;
height: 32px;
& svg {
width: 12px;
height: 12px;
flex-shrink: 0;
color: ${theme.palette.grey[600]};
}
`;
const ChildrenWrapper = styled("div")`
display: flex;
`;
const MenuDivider = styled("div")`
width: 100%;
margin: auto;
margin-top: 4px;
margin-bottom: 4px;
border-top: 1px solid ${theme.palette.grey[200]};
`;
const MenuItemText = styled("div")`
flex: 1;
min-width: 0;
color: ${theme.palette.common.black};
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
`;
const MenuItemExample = styled("div")`
color: ${theme.palette.grey[400]};
margin-left: 12px;
`;
export default FormulaBarMenu;

View File

@@ -398,7 +398,9 @@ const ListItem = styled("div")<{ $isSelected: boolean }>(({ $isSelected }) => ({
display: "flex",
alignItems: "flex-start",
justifyContent: "space-between",
gap: "8px",
padding: "8px 12px",
cursor: "pointer",
minHeight: "40px",
boxSizing: "border-box",
borderBottom: `1px solid ${theme.palette.grey[200]}`,
@@ -438,6 +440,8 @@ const NameText = styled("span")({
fontSize: "12px",
color: theme.palette.common.black,
fontWeight: 600,
wordBreak: "break-all",
overflowWrap: "break-word",
});
const IconsWrapper = styled("div")({

View File

@@ -33,7 +33,6 @@ import {
Redo2,
RemoveFormatting,
Strikethrough,
Tags,
Type,
Underline,
Undo2,
@@ -87,7 +86,6 @@ type ToolbarProperties = {
numFmt: string;
showGridLines: boolean;
onToggleShowGridLines: (show: boolean) => void;
openDrawer: () => void;
};
function Toolbar(properties: ToolbarProperties) {
@@ -514,18 +512,6 @@ function Toolbar(properties: ToolbarProperties) {
{properties.showGridLines ? <Grid2x2Check /> : <Grid2x2X />}
</StyledButton>
</Tooltip>
<Tooltip title={t("toolbar.named_ranges")}>
<StyledButton
type="button"
$pressed={false}
onClick={() => {
properties.openDrawer();
}}
disabled={!canEdit}
>
<Tags />
</StyledButton>
</Tooltip>
<Tooltip title={t("toolbar.selected_png")}>
<StyledButton
type="button"

View File

@@ -665,9 +665,6 @@ const Workbook = (props: { model: Model; workbookState: WorkbookState }) => {
model.setShowGridLines(sheet, show);
setRedrawId((id) => id + 1);
}}
openDrawer={() => {
setDrawerOpen(true);
}}
/>
<WorksheetAreaLeft $drawerWidth={isDrawerOpen ? drawerWidth : 0}>
<FormulaBar
@@ -682,6 +679,10 @@ const Workbook = (props: { model: Model; workbookState: WorkbookState }) => {
}}
model={model}
workbookState={workbookState}
openDrawer={() => {
setDrawerOpen(true);
}}
canEdit={true}
/>
<Worksheet
model={model}
@@ -762,9 +763,9 @@ type WorksheetAreaLeftProps = { $drawerWidth: number };
const WorksheetAreaLeft = styled("div")<WorksheetAreaLeftProps>(
({ $drawerWidth }) => ({
position: "absolute",
top: `${TOOLBAR_HEIGHT + 1}px`,
top: `${TOOLBAR_HEIGHT}px`,
width: `calc(100% - ${$drawerWidth}px)`,
height: `calc(100% - ${TOOLBAR_HEIGHT + 1}px)`,
height: `calc(100% - ${TOOLBAR_HEIGHT}px)`,
}),
);

View File

@@ -1,5 +1,6 @@
import type { CellStyle, Model } from "@ironcalc/wasm";
import { columnNameFromNumber } from "@ironcalc/wasm";
import { theme } from "../../theme";
import { getColor } from "../Editor/util";
import type { Cell } from "../types";
import type { WorkbookState } from "../workbookState";
@@ -721,7 +722,7 @@ export default class WorksheetCanvas {
const style = this.model.getCellStyle(selectedSheet, row, column);
// first the background
let backgroundColor = "#FFFFFF";
let backgroundColor = theme.palette.common.white;
if (style.fill.fg_color) {
backgroundColor = style.fill.fg_color;
}
@@ -1036,14 +1037,21 @@ export default class WorksheetCanvas {
width: number,
div: HTMLDivElement,
selected: boolean,
isFullColumnSelected: boolean,
): void {
div.style.boxSizing = "border-box";
div.style.width = `${width}px`;
div.style.height = `${headerRowHeight}px`;
div.style.backgroundColor = selected
? headerSelectedBackground
? isFullColumnSelected
? theme.palette.primary.main
: headerSelectedBackground
: headerBackground;
div.style.color = selected ? headerSelectedColor : headerTextColor;
div.style.color = selected
? isFullColumnSelected
? theme.palette.common.white
: headerSelectedColor
: headerTextColor;
div.style.fontWeight = "bold";
div.style.borderLeft = `1px solid ${headerBorderColor}`;
div.style.borderTop = `1px solid ${headerBorderColor}`;
@@ -1071,9 +1079,15 @@ export default class WorksheetCanvas {
const { sheet: selectedSheet, range } = this.model.getSelectedView();
let rowStart = range[0];
let rowEnd = range[2];
let columnStart = range[1];
let columnEnd = range[3];
if (rowStart > rowEnd) {
[rowStart, rowEnd] = [rowEnd, rowStart];
}
if (columnStart > columnEnd) {
[columnStart, columnEnd] = [columnEnd, columnStart];
}
const isFullRowSelected = columnStart === 1 && columnEnd === LAST_COLUMN;
const context = this.ctx;
let topLeftCornerY = headerRowHeight + 0.5;
@@ -1085,7 +1099,9 @@ export default class WorksheetCanvas {
context.fillStyle = headerBorderColor;
context.fillRect(0.5, topLeftCornerY, headerColumnWidth, rowHeight);
context.fillStyle = selected
? headerSelectedBackground
? isFullRowSelected
? theme.palette.primary.main
: headerSelectedBackground
: headerBackground;
context.fillRect(
0.5,
@@ -1097,7 +1113,11 @@ export default class WorksheetCanvas {
context.fillStyle = outlineColor;
context.fillRect(headerColumnWidth - 1, topLeftCornerY, 1, rowHeight);
}
context.fillStyle = selected ? headerSelectedColor : headerTextColor;
context.fillStyle = selected
? isFullRowSelected
? theme.palette.common.white
: headerSelectedColor
: headerTextColor;
context.font = `bold 12px ${defaultCellFontFamily}`;
context.fillText(
`${row}`,
@@ -1122,11 +1142,17 @@ export default class WorksheetCanvas {
const { columnHeaders } = this;
let deltaX = 0;
const { range } = this.model.getSelectedView();
let rowStart = range[0];
let rowEnd = range[2];
let columnStart = range[1];
let columnEnd = range[3];
if (columnStart > columnEnd) {
[columnStart, columnEnd] = [columnEnd, columnStart];
}
if (rowStart > rowEnd) {
[rowStart, rowEnd] = [rowEnd, rowStart];
}
const isFullColumnSelected = rowStart === 1 && rowEnd === LAST_ROW;
for (const header of columnHeaders.querySelectorAll(".column-header"))
header.remove();
for (const handle of columnHeaders.querySelectorAll(
@@ -1146,7 +1172,12 @@ export default class WorksheetCanvas {
// Frozen headers
for (let column = 1; column <= frozenColumns; column += 1) {
const selected = column >= columnStart && column <= columnEnd;
deltaX += this.addColumnHeader(deltaX, column, selected);
deltaX += this.addColumnHeader(
deltaX,
column,
selected,
isFullColumnSelected,
);
}
if (frozenColumns !== 0) {
@@ -1162,7 +1193,12 @@ export default class WorksheetCanvas {
for (let column = firstColumn; column <= lastColumn; column += 1) {
const selected = column >= columnStart && column <= columnEnd;
deltaX += this.addColumnHeader(deltaX, column, selected);
deltaX += this.addColumnHeader(
deltaX,
column,
selected,
isFullColumnSelected,
);
}
columnHeaders.style.width = `${deltaX}px`;
@@ -1172,6 +1208,7 @@ export default class WorksheetCanvas {
deltaX: number,
column: number,
selected: boolean,
isFullColumnSelected: boolean,
): number {
const columnWidth = this.getColumnWidth(
this.model.getSelectedSheet(),
@@ -1182,7 +1219,7 @@ export default class WorksheetCanvas {
div.textContent = columnNameFromNumber(column);
this.columnHeaders.insertBefore(div, null);
this.styleColumnHeader(columnWidth, div, selected);
this.styleColumnHeader(columnWidth, div, selected, isFullColumnSelected);
this.addColumnResizeHandle(deltaX + columnWidth, column, columnWidth);
return columnWidth;
}

View File

@@ -92,6 +92,9 @@
"label": "Formula",
"title": "Update formula"
},
"formula_bar": {
"manage_named_ranges": "Manage Named Ranges"
},
"navigation": {
"add_sheet": "Add sheet",
"sheet_list": "Sheet list",

View File

@@ -91,6 +91,7 @@
"integrity": "sha512-e7jT4DxYvIDLk1ZHmU/m/mB19rex9sv0c2ftBtjSBv+kVM/902eh0fINUzD7UwLLNR+jU585GxUJ8/EBfAM5fw==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"@babel/code-frame": "^7.27.1",
"@babel/generator": "^7.28.5",
@@ -570,6 +571,7 @@
"resolved": "https://registry.npmjs.org/@emotion/react/-/react-11.14.0.tgz",
"integrity": "sha512-O000MLDBDdk/EohJPFUqvnp4qnHeYkVP5B0xEG0D/L7cOKP9kefu2DXn8dj74cQfsEzUqh+sr1RzFqiL1o+PpA==",
"license": "MIT",
"peer": true,
"dependencies": {
"@babel/runtime": "^7.18.3",
"@emotion/babel-plugin": "^11.13.5",
@@ -613,6 +615,7 @@
"resolved": "https://registry.npmjs.org/@emotion/styled/-/styled-11.14.1.tgz",
"integrity": "sha512-qEEJt42DuToa3gurlH4Qqc1kVpNq8wO8cJtDzU46TjlzWjDlsVyevtYCRijVq3SrHsROS+gVQ8Fnea108GnKzw==",
"license": "MIT",
"peer": true,
"dependencies": {
"@babel/runtime": "^7.18.3",
"@emotion/babel-plugin": "^11.13.5",
@@ -2026,6 +2029,7 @@
"resolved": "https://registry.npmjs.org/@types/react/-/react-19.2.4.tgz",
"integrity": "sha512-tBFxBp9Nfyy5rsmefN+WXc1JeW/j2BpBHFdLZbEVfs9wn3E3NRFxwV0pJg8M1qQAexFpvz73hJXFofV0ZAu92A==",
"license": "MIT",
"peer": true,
"dependencies": {
"csstype": "^3.0.2"
}
@@ -2122,6 +2126,7 @@
}
],
"license": "MIT",
"peer": true,
"dependencies": {
"baseline-browser-mapping": "^2.8.25",
"caniuse-lite": "^1.0.30001754",
@@ -2691,6 +2696,7 @@
"integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==",
"dev": true,
"license": "MIT",
"peer": true,
"engines": {
"node": ">=12"
},
@@ -2758,6 +2764,7 @@
"resolved": "https://registry.npmjs.org/react/-/react-19.2.0.tgz",
"integrity": "sha512-tmbWg6W31tQLeB5cdIBOicJDJRR2KzXsV7uSK9iNfLWQ5bIZfxuPEHp7M8wiHyHnn0DD1i7w3Zmin0FtkrwoCQ==",
"license": "MIT",
"peer": true,
"engines": {
"node": ">=0.10.0"
}
@@ -2767,6 +2774,7 @@
"resolved": "https://registry.npmjs.org/react-dom/-/react-dom-19.2.0.tgz",
"integrity": "sha512-UlbRu4cAiGaIewkPyiRGJk0imDN2T3JjieT6spoL2UeSf5od4n5LB/mQ4ejmxhCFT1tYe8IvaFulzynWovsEFQ==",
"license": "MIT",
"peer": true,
"dependencies": {
"scheduler": "^0.27.0"
},
@@ -2978,6 +2986,7 @@
"integrity": "sha512-jl1vZzPDinLr9eUt3J/t7V6FgNEw9QjvBPdysz9KfQDD41fQrC2Y4vKQdiaUpFT4bXlb1RHhLpp8wtm6M5TgSw==",
"dev": true,
"license": "Apache-2.0",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
@@ -3023,6 +3032,7 @@
"integrity": "sha512-BxAKBWmIbrDgrokdGZH1IgkIk/5mMHDreLDmCJ0qpyJaAteP8NvMhkwr/ZCQNqNH97bw/dANTE9PDzqwJghfMQ==",
"dev": true,
"license": "MIT",
"peer": true,
"dependencies": {
"esbuild": "^0.25.0",
"fdir": "^6.5.0",
@@ -3113,21 +3123,6 @@
"integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==",
"dev": true,
"license": "ISC"
},
"node_modules/yaml": {
"version": "2.8.1",
"resolved": "https://registry.npmjs.org/yaml/-/yaml-2.8.1.tgz",
"integrity": "sha512-lcYcMxX2PO9XMGvAJkJ3OsNMw+/7FKes7/hgerGUYWIoWu5j/+YQqcZr5JnPZWzOsEBgMbSbiSTn/dv/69Mkpw==",
"dev": true,
"license": "ISC",
"optional": true,
"peer": true,
"bin": {
"yaml": "bin.mjs"
},
"engines": {
"node": ">= 14.6"
}
}
}
}

View File

@@ -227,16 +227,19 @@ const Wrapper = styled("div")`
`;
const DRAWER_WIDTH = 264;
const MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE = 440;
export const MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE = 768;
const MainContent = styled("div")<{ isDrawerOpen: boolean }>`
margin-left: ${({ isDrawerOpen }) => (isDrawerOpen ? "0px" : `-${DRAWER_WIDTH}px`)};
width: ${({ isDrawerOpen }) => (isDrawerOpen ? `calc(100% - ${DRAWER_WIDTH}px)` : "100%")};
margin-left: ${({ isDrawerOpen }) =>
isDrawerOpen ? "0px" : `-${DRAWER_WIDTH}px`};
width: ${({ isDrawerOpen }) =>
isDrawerOpen ? `calc(100% - ${DRAWER_WIDTH}px)` : "100%"};
display: flex;
flex-direction: column;
position: relative;
@media (max-width: ${MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE}px) {
${({ isDrawerOpen }) => isDrawerOpen && `min-width: ${MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE}px;`}
${({ isDrawerOpen }) =>
isDrawerOpen && `min-width: ${MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE}px;`}
}
`;
@@ -247,7 +250,7 @@ const MobileOverlay = styled("div")`
right: 0;
bottom: 0;
background-color: rgba(255, 255, 255, 0.8);
z-index: 1;
z-index: 100;
cursor: pointer;
@media (min-width: ${MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE + 1}px) {

View File

@@ -3,6 +3,7 @@ import type { Model } from "@ironcalc/workbook";
import { IconButton, Tooltip } from "@mui/material";
import { CloudOff, PanelLeftClose, PanelLeftOpen } from "lucide-react";
import { useLayoutEffect, useRef, useState } from "react";
import { MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE } from "../App";
import { FileMenu } from "./FileMenu";
import { HelpMenu } from "./HelpMenu";
import { downloadModel } from "./rpc";
@@ -77,7 +78,7 @@ export function FileBar(properties: {
{properties.isDrawerOpen ? <PanelLeftClose /> : <PanelLeftOpen />}
</DrawerButton>
</Tooltip>
{width > 440 && (
{width > MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE && (
<FileMenu
newModel={properties.newModel}
newModelFromTemplate={properties.newModelFromTemplate}
@@ -92,7 +93,7 @@ export function FileBar(properties: {
onDelete={properties.onDelete}
/>
)}
{width > 440 && <HelpMenu />}
{width > MIN_MAIN_CONTENT_WIDTH_FOR_MOBILE && <HelpMenu />}
<WorkbookTitleWrapper>
<WorkbookTitle
name={properties.model.getName()}
@@ -112,7 +113,8 @@ export function FileBar(properties: {
<div style={{ fontWeight: "bold" }}>{cloudWarningText2}</div>
</div>
}
placement="bottom-start"
placement="bottom"
enterTouchDelay={0}
enterDelay={500}
slotProps={{
popper: {

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More