--- layout: doc outline: deep lang: en-US --- # ERFC.PRECISE function ::: warning **Note:** This draft page is under construction 🚧 ::: ## Overview ERFC.PRECISE (ERror Function Complementary) is a function of the Engineering category that calculates a value for the _complementary error function_, defined by $\text{erfc}(x) = 1 - \text{erf}(x)$. Also known as the _complementary Gauss error function_, the complementary error function represents the probability of a random variable falling outside a certain range, given that it follows a specified normal distribution. ERFC.PRECISE is provided for compatibility with other spreadsheets. For all real values of $x$, $\text{ERFC.PRECISE}(x)=\text{ERFC}(x)$. ## Usage ### Syntax **ERFC.PRECISE(X) => erfc.precise** ### Argument descriptions * *X* ([number](/features/value-types#numbers), required). The lower integration limit to be used to calculate the complementary error function. ERFC.PRECISE integrates over the range [X, $\infty$). ### Additional guidance None. ### Returned value ERFC.PRECISE returns a [number](/features/value-types#numbers) that is the complementary error function probability for the specified argument. The returned value lies in range [0, 2]. ### Error conditions * In common with many other IronCalc functions, ERFC.PRECISE propagates errors that are found in its argument. * If no argument, or more than one argument, is supplied, then ERFC.PRECISE returns the [`#ERROR!`](/features/error-types.md#error) error. * If the value of any argument is not (or cannot be converted to) a [number](/features/value-types#numbers), then ERFC.PRECISE returns the [`#VALUE!`](/features/error-types.md#value) error. * For some argument values, ERFC.PRECISE may return the [`#DIV/0!`](/features/error-types.md#div-0) error. ## Details * The complementary error function arises in many scientific, engineering, and mathematical fields and is commonly defined by the following equation (applicable for any real number $x$): $$ \text{erfc}(x) = \frac{2}{\sqrt{\pi} }\: \int_{x}^{\infty} e^{-t^2}\:dt $$ * The figure below illustrates the output of the ERFC.PRECISE function for values of $x$ in the range -3 to +3.
Graph showing erfc(x) for x between -3 and +3.
* This figure illustrates some of the key characteristics of the complementary error function: * $\text{erfc}(0) = 1$ * $\text{erfc}(-x) = 2-\text{erfc}(x)$ * As $x \rightarrow \infty$, $\text{erfc}(x) \rightarrow 0$ * As $x \rightarrow -\infty$, $\text{erfc}(x) \rightarrow 2$ * The complementary error function is a [transcendental](https://en.wikipedia.org/wiki/Transcendental_function), non-algebraic mathematical function. IronCalc implements the ERFC.PRECISE function by numerical approximation using a power series. ## Examples [See some examples in IronCalc](https://app.ironcalc.com/?example=erfc-precise). ## Links * See also IronCalc's [ERF](/functions/engineering/erf.md), [ERFC](/functions/engineering/erfc.md) and [ERF.PRECISE](/functions/engineering/erf-precise.md) functions. * Visit Microsoft Excel's [ERFC.PRECISE function](https://support.microsoft.com/en-gb/office/erfc-precise-function-e90e6bab-f45e-45df-b2ac-cd2eb4d4a273) page. * Both [Google Sheets](https://support.google.com/docs/answer/9386303) and [LibreOffice Calc](https://wiki.documentfoundation.org/Documentation/Calc_Functions/ERFC.PRECISE) provide versions of the ERFC.PRECISE function.