/* @(#)e_j0.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* j0(x), y0(x) * Bessel function of the first and second kinds of order zero. * Method -- j0(x): * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... * 2. Reduce x to |x| since j0(x)=j0(-x), and * for x in (0,2) * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) * for x in (2,inf) * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) * as follow: * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) * = 1/sqrt(2) * (cos(x) + sin(x)) * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) * = 1/sqrt(2) * (sin(x) - cos(x)) * (To avoid cancellation, use * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) * to compute the worse 1.) * * 3 Special cases * j0(nan)= nan * j0(0) = 1 * j0(inf) = 0 * * Method -- y0(x): * 1. For x<2. * Since * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. * We use the following function to approximate y0, * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 * where * U(z) = u00 + u01*z + ... + u06*z^6 * V(z) = 1 + v01*z + ... + v04*z^4 * with absolute approximation error bounded by 2**-72. * Note: For tiny x, U/V = u0 and j0(x)~1, hence * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) * 2. For x>=2. * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) * by the method menti1d above. * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. */ use std::f64::consts::FRAC_2_PI; use super::bessel_util::{high_word, split_words, FRAC_2_SQRT_PI, HUGE}; // R0/S0 on [0, 2.00] const R02: f64 = 1.562_499_999_999_999_5e-2; // 0x3F8FFFFF, 0xFFFFFFFD const R03: f64 = -1.899_792_942_388_547_2e-4; // 0xBF28E6A5, 0xB61AC6E9 const R04: f64 = 1.829_540_495_327_006_7e-6; // 0x3EBEB1D1, 0x0C503919 const R05: f64 = -4.618_326_885_321_032e-9; // 0xBE33D5E7, 0x73D63FCE const S01: f64 = 1.561_910_294_648_900_1e-2; // 0x3F8FFCE8, 0x82C8C2A4 const S02: f64 = 1.169_267_846_633_374_5e-4; // 0x3F1EA6D2, 0xDD57DBF4 const S03: f64 = 5.135_465_502_073_181e-7; // 0x3EA13B54, 0xCE84D5A9 const S04: f64 = 1.166_140_033_337_9e-9; // 0x3E1408BC, 0xF4745D8F /* The asymptotic expansions of pzero is * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. * For x >= 2, We approximate pzero by * pzero(x) = 1 + (R/S) * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 * S = 1 + pS0*s^2 + ... + pS4*s^10 * and * | pzero(x)-1-R/S | <= 2 ** ( -60.26) */ const P_R8: [f64; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -7.031_249_999_999_004e-2, /* 0xBFB1FFFF, 0xFFFFFD32 */ -8.081_670_412_753_498, /* 0xC02029D0, 0xB44FA779 */ -2.570_631_056_797_048_5e2, /* 0xC0701102, 0x7B19E863 */ -2.485_216_410_094_288e3, /* 0xC0A36A6E, 0xCD4DCAFC */ -5.253_043_804_907_295e3, /* 0xC0B4850B, 0x36CC643D */ ]; const P_S8: [f64; 5] = [ 1.165_343_646_196_681_8e2, /* 0x405D2233, 0x07A96751 */ 3.833_744_753_641_218_3e3, /* 0x40ADF37D, 0x50596938 */ 4.059_785_726_484_725_5e4, /* 0x40E3D2BB, 0x6EB6B05F */ 1.167_529_725_643_759_2e5, /* 0x40FC810F, 0x8F9FA9BD */ 4.762_772_841_467_309_6e4, /* 0x40E74177, 0x4F2C49DC */ ]; const P_R5: [f64; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ -1.141_254_646_918_945e-11, /* 0xBDA918B1, 0x47E495CC */ -7.031_249_408_735_993e-2, /* 0xBFB1FFFF, 0xE69AFBC6 */ -4.159_610_644_705_878, /* 0xC010A370, 0xF90C6BBF */ -6.767_476_522_651_673e1, /* 0xC050EB2F, 0x5A7D1783 */ -3.312_312_996_491_729_7e2, /* 0xC074B3B3, 0x6742CC63 */ -3.464_333_883_656_049e2, /* 0xC075A6EF, 0x28A38BD7 */ ]; const P_S5: [f64; 5] = [ 6.075_393_826_923_003_4e1, /* 0x404E6081, 0x0C98C5DE */ 1.051_252_305_957_045_8e3, /* 0x40906D02, 0x5C7E2864 */ 5.978_970_943_338_558e3, /* 0x40B75AF8, 0x8FBE1D60 */ 9.625_445_143_577_745e3, /* 0x40C2CCB8, 0xFA76FA38 */ 2.406_058_159_229_391e3, /* 0x40A2CC1D, 0xC70BE864 */ ]; const P_R3: [f64; 6] = [ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -2.547_046_017_719_519e-9, /* 0xBE25E103, 0x6FE1AA86 */ -7.031_196_163_814_817e-2, /* 0xBFB1FFF6, 0xF7C0E24B */ -2.409_032_215_495_296, /* 0xC00345B2, 0xAEA48074 */ -2.196_597_747_348_831e1, /* 0xC035F74A, 0x4CB94E14 */ -5.807_917_047_017_376e1, /* 0xC04D0A22, 0x420A1A45 */ -3.144_794_705_948_885e1, /* 0xC03F72AC, 0xA892D80F */ ]; const P_S3: [f64; 5] = [ 3.585_603_380_552_097e1, /* 0x4041ED92, 0x84077DD3 */ 3.615_139_830_503_038_6e2, /* 0x40769839, 0x464A7C0E */ 1.193_607_837_921_115_3e3, /* 0x4092A66E, 0x6D1061D6 */ 1.127_996_798_569_074_1e3, /* 0x40919FFC, 0xB8C39B7E */ 1.735_809_308_133_357_5e2, /* 0x4065B296, 0xFC379081 */ ]; const P_R2: [f64; 6] = [ /* for x in [2.8570,2]=1/[0.3499,0.5] */ -8.875_343_330_325_264e-8, /* 0xBE77D316, 0xE927026D */ -7.030_309_954_836_247e-2, /* 0xBFB1FF62, 0x495E1E42 */ -1.450_738_467_809_529_9, /* 0xBFF73639, 0x8A24A843 */ -7.635_696_138_235_278, /* 0xC01E8AF3, 0xEDAFA7F3 */ -1.119_316_688_603_567_5e1, /* 0xC02662E6, 0xC5246303 */ -3.233_645_793_513_353_4, /* 0xC009DE81, 0xAF8FE70F */ ]; const P_S2: [f64; 5] = [ 2.222_029_975_320_888e1, /* 0x40363865, 0x908B5959 */ 1.362_067_942_182_152e2, /* 0x4061069E, 0x0EE8878F */ 2.704_702_786_580_835e2, /* 0x4070E786, 0x42EA079B */ 1.538_753_942_083_203_3e2, /* 0x40633C03, 0x3AB6FAFF */ 1.465_761_769_482_562e1, /* 0x402D50B3, 0x44391809 */ ]; // Note: This function is only called for ix>=0x40000000 (see above) fn pzero(x: f64) -> f64 { let ix = high_word(x) & 0x7fffffff; // ix>=0x40000000 && ix<=0x48000000); let (p, q) = if ix >= 0x40200000 { (P_R8, P_S8) } else if ix >= 0x40122E8B { (P_R5, P_S5) } else if ix >= 0x4006DB6D { (P_R3, P_S3) } else { (P_R2, P_S2) }; let z = 1.0 / (x * x); let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4])))); 1.0 + r / s } /* For x >= 8, the asymptotic expansions of qzero is * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. * We approximate pzero by * qzero(x) = s*(-1.25 + (R/S)) * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 * S = 1 + qS0*s^2 + ... + qS5*s^12 * and * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) */ const Q_R8: [f64; 6] = [ /* for x in [inf, 8]=1/[0,0.125] */ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 7.324_218_749_999_35e-2, /* 0x3FB2BFFF, 0xFFFFFE2C */ 1.176_820_646_822_527e1, /* 0x40278952, 0x5BB334D6 */ 5.576_733_802_564_019e2, /* 0x40816D63, 0x15301825 */ 8.859_197_207_564_686e3, /* 0x40C14D99, 0x3E18F46D */ 3.701_462_677_768_878e4, /* 0x40E212D4, 0x0E901566 */ ]; const Q_S8: [f64; 6] = [ 1.637_760_268_956_898_2e2, /* 0x406478D5, 0x365B39BC */ 8.098_344_946_564_498e3, /* 0x40BFA258, 0x4E6B0563 */ 1.425_382_914_191_204_8e5, /* 0x41016652, 0x54D38C3F */ 8.033_092_571_195_144e5, /* 0x412883DA, 0x83A52B43 */ 8.405_015_798_190_605e5, /* 0x4129A66B, 0x28DE0B3D */ -3.438_992_935_378_666e5, /* 0xC114FD6D, 0x2C9530C5 */ ]; const Q_R5: [f64; 6] = [ /* for x in [8,4.5454]=1/[0.125,0.22001] */ 1.840_859_635_945_155_3e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ 7.324_217_666_126_848e-2, /* 0x3FB2BFFF, 0xD172B04C */ 5.835_635_089_620_569_5, /* 0x401757B0, 0xB9953DD3 */ 1.351_115_772_864_498_3e2, /* 0x4060E392, 0x0A8788E9 */ 1.027_243_765_961_641e3, /* 0x40900CF9, 0x9DC8C481 */ 1.989_977_858_646_053_8e3, /* 0x409F17E9, 0x53C6E3A6 */ ]; const Q_S5: [f64; 6] = [ 8.277_661_022_365_378e1, /* 0x4054B1B3, 0xFB5E1543 */ 2.077_814_164_213_93e3, /* 0x40A03BA0, 0xDA21C0CE */ 1.884_728_877_857_181e4, /* 0x40D267D2, 0x7B591E6D */ 5.675_111_228_949_473e4, /* 0x40EBB5E3, 0x97E02372 */ 3.597_675_384_251_145e4, /* 0x40E19118, 0x1F7A54A0 */ -5.354_342_756_019_448e3, /* 0xC0B4EA57, 0xBEDBC609 */ ]; const Q_R3: [f64; 6] = [ /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 4.377_410_140_897_386e-9, /* 0x3E32CD03, 0x6ADECB82 */ 7.324_111_800_429_114e-2, /* 0x3FB2BFEE, 0x0E8D0842 */ 3.344_231_375_161_707, /* 0x400AC0FC, 0x61149CF5 */ 4.262_184_407_454_126_5e1, /* 0x40454F98, 0x962DAEDD */ 1.708_080_913_405_656e2, /* 0x406559DB, 0xE25EFD1F */ 1.667_339_486_966_511_7e2, /* 0x4064D77C, 0x81FA21E0 */ ]; const Q_S3: [f64; 6] = [ 4.875_887_297_245_872e1, /* 0x40486122, 0xBFE343A6 */ 7.096_892_210_566_06e2, /* 0x40862D83, 0x86544EB3 */ 3.704_148_226_201_113_6e3, /* 0x40ACF04B, 0xE44DFC63 */ 6.460_425_167_525_689e3, /* 0x40B93C6C, 0xD7C76A28 */ 2.516_333_689_203_689_6e3, /* 0x40A3A8AA, 0xD94FB1C0 */ -1.492_474_518_361_564e2, /* 0xC062A7EB, 0x201CF40F */ ]; const Q_R2: [f64; 6] = [ /* for x in [2.8570,2]=1/[0.3499,0.5] */ 1.504_444_448_869_832_7e-7, /* 0x3E84313B, 0x54F76BDB */ 7.322_342_659_630_793e-2, /* 0x3FB2BEC5, 0x3E883E34 */ 1.998_191_740_938_16, /* 0x3FFFF897, 0xE727779C */ 1.449_560_293_478_857_4e1, /* 0x402CFDBF, 0xAAF96FE5 */ 3.166_623_175_047_815_4e1, /* 0x403FAA8E, 0x29FBDC4A */ 1.625_270_757_109_292_7e1, /* 0x403040B1, 0x71814BB4 */ ]; const Q_S2: [f64; 6] = [ 3.036_558_483_552_192e1, /* 0x403E5D96, 0xF7C07AED */ 2.693_481_186_080_498_4e2, /* 0x4070D591, 0xE4D14B40 */ 8.447_837_575_953_201e2, /* 0x408A6645, 0x22B3BF22 */ 8.829_358_451_124_886e2, /* 0x408B977C, 0x9C5CC214 */ 2.126_663_885_117_988_3e2, /* 0x406A9553, 0x0E001365 */ -5.310_954_938_826_669_5, /* 0xC0153E6A, 0xF8B32931 */ ]; fn qzero(x: f64) -> f64 { let ix = high_word(x) & 0x7fffffff; let (p, q) = if ix >= 0x40200000 { (Q_R8, Q_S8) } else if ix >= 0x40122E8B { (Q_R5, Q_S5) } else if ix >= 0x4006DB6D { (Q_R3, Q_S3) } else { (Q_R2, Q_S2) }; let z = 1.0 / (x * x); let r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5])))); let s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5]))))); (-0.125 + r / s) / x } const U00: f64 = -7.380_429_510_868_723e-2; /* 0xBFB2E4D6, 0x99CBD01F */ const U01: f64 = 1.766_664_525_091_811_2e-1; /* 0x3FC69D01, 0x9DE9E3FC */ const U02: f64 = -1.381_856_719_455_969e-2; /* 0xBF8C4CE8, 0xB16CFA97 */ const U03: f64 = 3.474_534_320_936_836_5e-4; /* 0x3F36C54D, 0x20B29B6B */ const U04: f64 = -3.814_070_537_243_641_6e-6; /* 0xBECFFEA7, 0x73D25CAD */ const U05: f64 = 1.955_901_370_350_229_2e-8; /* 0x3E550057, 0x3B4EABD4 */ const U06: f64 = -3.982_051_941_321_034e-11; /* 0xBDC5E43D, 0x693FB3C8 */ const V01: f64 = 1.273_048_348_341_237e-2; /* 0x3F8A1270, 0x91C9C71A */ const V02: f64 = 7.600_686_273_503_533e-5; /* 0x3F13ECBB, 0xF578C6C1 */ const V03: f64 = 2.591_508_518_404_578e-7; /* 0x3E91642D, 0x7FF202FD */ const V04: f64 = 4.411_103_113_326_754_7e-10; /* 0x3DFE5018, 0x3BD6D9EF */ pub(crate) fn y0(x: f64) -> f64 { let (lx, hx) = split_words(x); let ix = 0x7fffffff & hx; // Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 if ix >= 0x7ff00000 { return 1.0 / (x + x * x); } if (ix | lx) == 0 { return f64::NEG_INFINITY; } if hx < 0 { return f64::NAN; } if ix >= 0x40000000 { // |x| >= 2.0 // y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) // where x0 = x-pi/4 // Better formula: // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) // = 1/sqrt(2) * (sin(x) + cos(x)) // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) // = 1/sqrt(2) * (sin(x) - cos(x)) // To avoid cancellation, use // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) // to compute the worse 1. let s = x.sin(); let c = x.cos(); let mut ss = s - c; let mut cc = s + c; // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) if ix < 0x7fe00000 { // make sure x+x not overflow let z = -(x + x).cos(); if (s * c) < 0.0 { cc = z / ss; } else { ss = z / cc; } } return if ix > 0x48000000 { FRAC_2_SQRT_PI * ss / x.sqrt() } else { let u = pzero(x); let v = qzero(x); FRAC_2_SQRT_PI * (u * ss + v * cc) / x.sqrt() }; } if ix <= 0x3e400000 { // x < 2^(-27) return U00 + FRAC_2_PI * x.ln(); } let z = x * x; let u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06))))); let v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04))); u / v + FRAC_2_PI * (j0(x) * x.ln()) } pub(crate) fn j0(x: f64) -> f64 { let hx = high_word(x); let ix = hx & 0x7fffffff; if x.is_nan() { return x; } else if x.is_infinite() { return 0.0; } // the function is even let x = x.abs(); if ix >= 0x40000000 { // |x| >= 2.0 // let (s, c) = x.sin_cos() let s = x.sin(); let c = x.cos(); let mut ss = s - c; let mut cc = s + c; // makes sure that x+x does not overflow if ix < 0x7fe00000 { // |x| < f64::MAX / 2.0 let z = -(x + x).cos(); if s * c < 0.0 { cc = z / ss; } else { ss = z / cc; } } // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) return if ix > 0x48000000 { // x < 5.253807105661922e-287 (2^(-951)) FRAC_2_SQRT_PI * cc / (x.sqrt()) } else { let u = pzero(x); let v = qzero(x); FRAC_2_SQRT_PI * (u * cc - v * ss) / x.sqrt() }; }; if ix < 0x3f200000 { // |x| < 2^(-13) if HUGE + x > 1.0 { // raise inexact if x != 0 if ix < 0x3e400000 { return 1.0; // |x|<2^(-27) } else { return 1.0 - 0.25 * x * x; } } } let z = x * x; let r = z * (R02 + z * (R03 + z * (R04 + z * R05))); let s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04))); if ix < 0x3FF00000 { // |x| < 1.00 1.0 + z * (-0.25 + (r / s)) } else { let u = 0.5 * x; (1.0 + u) * (1.0 - u) + z * (r / s) } }