# This PR introduces:
## Parsing arrays:
{1,2,3} and {1;2;3}
Note that array elements can be numbers, booleans and errors (#VALUE!)
## Evaluating arrays in the SUM function
=SUM({1,2,3}) works!
## Evaluating arithmetic operation with arrays
=SUM({1,2,3} * 8) or =SUM({1,2,3}+{2,4,5}) works
This is done with just one function (handle_arithmetic) for most operations
## Some mathematical functions implement arrays
=SUM(SIN({1,2,3})) works
This is done with macros. See fn_single_number
So that implementing new functions that supports array are easy
# Not done in this PR
## Most functions are not supporting arrays
When that happens we either through #N/IMPL! (not implemented error)
or do implicit intersection. Some functions will be rather trivial to "arraify" some will be hard
## The final result in a cell cannot be an array
The formula ={1,2,3} in a cell will result in #N/IMPL!
## Exporting arrays to Excel might not work correctly
Excel uses the cm (cell metadata) for formulas that contain dynamic arrays.
Although the present PR does not introduce dynamic arrays some formulas like =SUM(SIN({1,2,3}))
is considered a dynamic formula
## There are not a lot of tests in this delivery
The bulk of the tests will be added once we start going function by function# This PR introduces:
## Parsing arrays:
{1,2,3} and {1;2;3}
Note that array elements can be numbers, booleans and errors (#VALUE!)
## Evaluating arrays in the SUM function
=SUM({1,2,3}) works!
## Evaluating arithmetic operation with arrays
=SUM({1,2,3} * 8) or =SUM({1,2,3}+{2,4,5}) works
This is done with just one function (handle_arithmetic) for most operations
## Some mathematical functions implement arrays
=SUM(SIN({1,2,3})) works
This is done with macros. See fn_single_number
So that implementing new functions that supports array are easy
# Not done in this PR
## Most functions are not supporting arrays
When that happens we either through #N/IMPL! (not implemented error)
or do implicit intersection. Some functions will be rather trivial to "arraify" some will be hard
## The final result in a cell cannot be an array
The formula ={1,2,3} in a cell will result in #N/IMPL!
## Exporting arrays to Excel might not work correctly
Excel uses the cm (cell metadata) for formulas that contain dynamic arrays.
Although the present PR does not introduce dynamic arrays some formulas like =SUM(SIN({1,2,3}))
is considered a dynamic formula
## There are not a lot of tests in this delivery
The bulk of the tests will be added once we start going function by function
## The array parsing does not respect the locale
Locales that use ',' as a decimal separator need to use something different for arrays
## The might introduce a small performance penalty
We haven't been benchmarking, and having closures for every arithmetic operation and every function
evaluation will introduce a performance hit. Fixing that in he future is not so hard writing tailored
code for the operation
IronCalc service application
This directory contains the code (frontend and backend) to run the code deployed at https://app.ironcalc.com
Development build:
- Run in this folder
caddy run(that just just a proxy for the front end and backend). You will need to leave it running all the time. - In the server folder run
cargo run - In the frontend folder
npm installandnpm run dev
That's it if you point your browser to localhost:2080 you should see the app.
Note that step three involves alo building thw wasm bindings and the widget
Deployment
The development environment is very close to a deployment environment.
Build the server binary:
In the server directory run:
cargo build --release
You will find a single binary in target/release/ironcalc_server
Build the frontend files
In the frontend folder:
npm install
npm run build
That will create a bunch of files that you should copy to your server
TODO
Deployment details, brotli, logs, stats, Postgres, systemctl files, ...