Files
IronCalc/base/src/functions/mathematical.rs
Nicolás Hatcher e5ec75495a UPDATE: Introducing Arrays
# This PR introduces:

## Parsing arrays:

{1,2,3} and {1;2;3}

Note that array elements can be numbers, booleans and errors (#VALUE!)

## Evaluating arrays in the SUM function

=SUM({1,2,3}) works!

## Evaluating arithmetic operation with arrays

=SUM({1,2,3} * 8) or =SUM({1,2,3}+{2,4,5}) works

This is done with just one function (handle_arithmetic) for most operations

## Some mathematical functions implement arrays

=SUM(SIN({1,2,3})) works

This is done with macros. See fn_single_number
So that implementing new functions that supports array are easy


# Not done in this PR

## Most functions are not supporting arrays

When that happens we either through #N/IMPL! (not implemented error)
or do implicit intersection. Some functions will be rather trivial to "arraify" some will be hard

## The final result in a cell cannot be an array

The formula ={1,2,3} in a cell will result in #N/IMPL!

## Exporting arrays to Excel might not work correctly

Excel uses the cm (cell metadata) for formulas that contain dynamic arrays.
Although the present PR does not introduce dynamic arrays some formulas like =SUM(SIN({1,2,3}))
is considered a dynamic formula

## There are not a lot of tests in this delivery

The bulk of the tests will be added once we start going function by function# This PR introduces:

## Parsing arrays:

{1,2,3} and {1;2;3}

Note that array elements can be numbers, booleans and errors (#VALUE!)

## Evaluating arrays in the SUM function

=SUM({1,2,3}) works!

## Evaluating arithmetic operation with arrays

=SUM({1,2,3} * 8) or =SUM({1,2,3}+{2,4,5}) works

This is done with just one function (handle_arithmetic) for most operations

## Some mathematical functions implement arrays

=SUM(SIN({1,2,3})) works

This is done with macros. See fn_single_number
So that implementing new functions that supports array are easy


# Not done in this PR

## Most functions are not supporting arrays

When that happens we either through #N/IMPL! (not implemented error)
or do implicit intersection. Some functions will be rather trivial to "arraify" some will be hard

## The final result in a cell cannot be an array

The formula ={1,2,3} in a cell will result in #N/IMPL!

## Exporting arrays to Excel might not work correctly

Excel uses the cm (cell metadata) for formulas that contain dynamic arrays.
Although the present PR does not introduce dynamic arrays some formulas like =SUM(SIN({1,2,3}))
is considered a dynamic formula

## There are not a lot of tests in this delivery

The bulk of the tests will be added once we start going function by function

## The array parsing does not respect the locale

Locales that use ',' as a decimal separator need to use something different for arrays

## The might introduce a small performance penalty

We haven't been benchmarking, and having closures for every arithmetic operation and every function
evaluation will introduce a performance hit. Fixing that in he future is not so hard writing tailored
code for the operation
2025-03-17 20:04:47 +01:00

505 lines
19 KiB
Rust

use crate::cast::NumberOrArray;
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::single_number_fn;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
use std::f64::consts::PI;
#[cfg(not(target_arch = "wasm32"))]
pub fn random() -> f64 {
rand::random()
}
#[cfg(target_arch = "wasm32")]
pub fn random() -> f64 {
use js_sys::Math;
Math::random()
}
impl Model {
pub(crate) fn fn_min(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.min(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.min(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_max(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.max(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.max(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_sum(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result += value,
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO: We should do this for all functions that run through ranges
// Running cargo test for the ironcalc takes around .8 seconds with this speedup
// and ~ 3.5 seconds without it. Note that once properly in place sheet.dimension should be almost a noop
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result += value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
result += value;
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_product(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 1.0;
let mut seen_value = false;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if !seen_value {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
/// SUMIF(criteria_range, criteria, [sum_range])
/// if sum_rage is missing then criteria_range will be used
pub(crate) fn fn_sumif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
pub(crate) fn fn_sumifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let sum = |value| total += value;
if let Err(e) = self.apply_ifs(args, cell, sum) {
return e;
}
CalcResult::Number(total)
}
pub(crate) fn fn_round(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
// Incorrect number of arguments
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
CalcResult::Number((value * scale).round() / scale)
}
pub(crate) fn fn_roundup(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).ceil() / scale)
} else {
CalcResult::Number((value * scale).floor() / scale)
}
}
pub(crate) fn fn_rounddown(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).floor() / scale)
} else {
CalcResult::Number((value * scale).ceil() / scale)
}
}
single_number_fn!(fn_sin, |f| Ok(f64::sin(f)));
single_number_fn!(fn_cos, |f| Ok(f64::cos(f)));
single_number_fn!(fn_tan, |f| Ok(f64::tan(f)));
single_number_fn!(fn_sinh, |f| Ok(f64::sinh(f)));
single_number_fn!(fn_cosh, |f| Ok(f64::cosh(f)));
single_number_fn!(fn_tanh, |f| Ok(f64::tanh(f)));
single_number_fn!(fn_asin, |f| Ok(f64::asin(f)));
single_number_fn!(fn_acos, |f| Ok(f64::acos(f)));
single_number_fn!(fn_atan, |f| Ok(f64::atan(f)));
single_number_fn!(fn_asinh, |f| Ok(f64::asinh(f)));
single_number_fn!(fn_acosh, |f| Ok(f64::acosh(f)));
single_number_fn!(fn_atanh, |f| Ok(f64::atanh(f)));
single_number_fn!(fn_abs, |f| Ok(f64::abs(f)));
single_number_fn!(fn_sqrt, |f| if f < 0.0 {
Err(Error::NUM)
} else {
Ok(f64::sqrt(f))
});
single_number_fn!(fn_sqrtpi, |f: f64| if f < 0.0 {
Err(Error::NUM)
} else {
Ok((f * PI).sqrt())
});
pub(crate) fn fn_pi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(PI)
}
pub(crate) fn fn_atan2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
CalcResult::Number(f64::atan2(y, x))
}
pub(crate) fn fn_power(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
if y == 0.0 {
return CalcResult::Number(1.0);
}
let result = x.powf(y);
if result.is_infinite() {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "POWER returned infinity".to_string(),
};
}
if result.is_nan() {
// This might happen for some combinations of negative base and exponent
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid arguments for POWER".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_rand(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(random())
}
// TODO: Add tests for RANDBETWEEN
pub(crate) fn fn_randbetween(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f.ceil() + 1.0,
Err(s) => return s,
};
if x > y {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: format!("{x}>{y}"),
};
}
CalcResult::Number((x + random() * (y - x)).floor())
}
}