Files
IronCalc/base/src/functions/logical.rs
2025-09-28 17:33:17 +02:00

288 lines
11 KiB
Rust

use crate::{
calc_result::CalcResult,
expressions::{parser::Node, token::Error, types::CellReferenceIndex},
model::Model,
};
use super::util::compare_values;
impl Model {
pub(crate) fn fn_true(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
CalcResult::Boolean(true)
} else {
CalcResult::new_args_number_error(cell)
}
}
pub(crate) fn fn_false(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
CalcResult::Boolean(false)
} else {
CalcResult::new_args_number_error(cell)
}
}
pub(crate) fn fn_if(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 || args.len() == 3 {
let cond_result = self.get_boolean(&args[0], cell);
let cond = match cond_result {
Ok(f) => f,
Err(s) => {
return s;
}
};
if cond {
return self.evaluate_node_in_context(&args[1], cell);
} else if args.len() == 3 {
return self.evaluate_node_in_context(&args[2], cell);
} else {
return CalcResult::Boolean(false);
}
}
CalcResult::new_args_number_error(cell)
}
pub(crate) fn fn_iferror(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let value = self.evaluate_node_in_context(&args[0], cell);
match value {
CalcResult::Error { .. } => {
return self.evaluate_node_in_context(&args[1], cell);
}
_ => return value,
}
}
CalcResult::new_args_number_error(cell)
}
pub(crate) fn fn_ifna(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let value = self.evaluate_node_in_context(&args[0], cell);
if let CalcResult::Error { error, .. } = &value {
if error == &Error::NA {
return self.evaluate_node_in_context(&args[1], cell);
}
}
return value;
}
CalcResult::new_args_number_error(cell)
}
pub(crate) fn fn_not(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 1 {
match self.get_boolean(&args[0], cell) {
Ok(f) => return CalcResult::Boolean(!f),
Err(s) => {
return s;
}
};
}
CalcResult::new_args_number_error(cell)
}
pub(crate) fn fn_and(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
self.logical_nary(
args,
cell,
|acc, value| acc.unwrap_or(true) && value,
Some(false),
)
}
pub(crate) fn fn_or(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
self.logical_nary(
args,
cell,
|acc, value| acc.unwrap_or(false) || value,
Some(true),
)
}
pub(crate) fn fn_xor(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
self.logical_nary(args, cell, |acc, value| acc.unwrap_or(false) ^ value, None)
}
/// Base function for AND, OR, XOR. These are all n-ary functions that perform a boolean operation on a series of
/// boolean values. These boolean values are sourced from `args`. Note that there is not a 1-1 relationship between
/// arguments and boolean values evaluated (see how Ranges are handled for example).
///
/// Each argument in `args` is evaluated and the resulting value is interpreted as a boolean as follows:
/// - Boolean: The value is used directly.
/// - Number: 0 is FALSE, all other values are TRUE.
/// - Range: Each cell in the range is evaluated as if they were individual arguments with some caveats
/// - Empty arg: FALSE
/// - Empty cell & String: Ignored, behaves exactly like the argument wasn't passed in at all
/// - Error: Propagated
///
/// If no arguments are provided, or all arguments are ignored, the function returns a #VALUE! error
///
/// **`fold_fn`:** The function that combines the running result with the next value boolean value. The running result
/// starts as `None`.
///
/// **`short_circuit_value`:** If the running result reaches `short_circuit_value`, the function returns early.
fn logical_nary(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
fold_fn: fn(Option<bool>, bool) -> bool,
short_circuit_value: Option<bool>,
) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = None;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Boolean(value) => result = Some(fold_fn(result, value)),
CalcResult::Number(value) => result = Some(fold_fn(result, value != 0.0)),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Boolean(value) => result = Some(fold_fn(result, value)),
CalcResult::Number(value) => {
result = Some(fold_fn(result, value != 0.0))
}
error @ CalcResult::Error { .. } => return error,
CalcResult::EmptyArg => {} // unreachable
CalcResult::Range { .. }
| CalcResult::String { .. }
| CalcResult::EmptyCell => {}
CalcResult::Array(_) => {
return CalcResult::Error {
error: Error::NIMPL,
origin: cell,
message: "Arrays not supported yet".to_string(),
}
}
}
if let (Some(current_result), Some(short_circuit_value)) =
(result, short_circuit_value)
{
if current_result == short_circuit_value {
return CalcResult::Boolean(current_result);
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
CalcResult::EmptyArg => result = Some(result.unwrap_or(false)),
// Strings are ignored unless they are "TRUE" or "FALSE" (case insensitive). EXCEPT if the string value
// comes from a reference, in which case it is always ignored regardless of its value.
CalcResult::String(..) => {
if !matches!(arg, Node::ReferenceKind { .. }) {
if let Ok(f) = self.get_boolean(arg, cell) {
result = Some(fold_fn(result, f));
}
}
}
// References to empty cells are ignored. If all args are ignored the result is #VALUE!
CalcResult::EmptyCell => {}
CalcResult::Array(_) => {
return CalcResult::Error {
error: Error::NIMPL,
origin: cell,
message: "Arrays not supported yet".to_string(),
}
}
}
if let (Some(current_result), Some(short_circuit_value)) = (result, short_circuit_value)
{
if current_result == short_circuit_value {
return CalcResult::Boolean(current_result);
}
}
}
if let Some(result) = result {
CalcResult::Boolean(result)
} else {
CalcResult::new_error(
Error::VALUE,
cell,
"No logical values in argument list".to_string(),
)
}
}
/// =SWITCH(expression, case1, value1, [case, value]*, [default])
pub(crate) fn fn_switch(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 3 {
return CalcResult::new_args_number_error(cell);
}
// TODO add implicit intersection
let expr = self.evaluate_node_in_context(&args[0], cell);
if expr.is_error() {
return expr;
}
// How many cases we have?
// 3, 4 args -> 1 case
let case_count = (args_count - 1) / 2;
for case_index in 0..case_count {
let case = self.evaluate_node_in_context(&args[2 * case_index + 1], cell);
if case.is_error() {
return case;
}
if compare_values(&expr, &case) == 0 {
return self.evaluate_node_in_context(&args[2 * case_index + 2], cell);
}
}
// None of the cases matched so we return the default
// If there is an even number of args is the last one otherwise is #N/A
if args_count.is_multiple_of(2) {
return self.evaluate_node_in_context(&args[args_count - 1], cell);
}
CalcResult::Error {
error: Error::NA,
origin: cell,
message: "Did not find a match".to_string(),
}
}
/// =IFS(condition1, value, [condition, value]*)
pub(crate) fn fn_ifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let args_count = args.len();
if args_count < 2 {
return CalcResult::new_args_number_error(cell);
}
if !args_count.is_multiple_of(2) {
// Missing value for last condition
return CalcResult::new_args_number_error(cell);
}
let case_count = args_count / 2;
for case_index in 0..case_count {
let value = self.get_boolean(&args[2 * case_index], cell);
match value {
Ok(b) => {
if b {
return self.evaluate_node_in_context(&args[2 * case_index + 1], cell);
}
}
Err(s) => return s,
}
}
CalcResult::Error {
error: Error::NA,
origin: cell,
message: "Did not find a match".to_string(),
}
}
}