184 lines
4.9 KiB
Rust
184 lines
4.9 KiB
Rust
use crate::functions::engineering::transcendental::bessel_k;
|
|
|
|
use super::{
|
|
bessel_i::bessel_i,
|
|
bessel_j0_y0::{j0, y0},
|
|
bessel_j1_y1::j1,
|
|
bessel_jn_yn::{jn, yn},
|
|
};
|
|
|
|
const EPS: f64 = 1e-13;
|
|
const EPS_LOW: f64 = 1e-6;
|
|
|
|
// Known values computed with Arb via Nemo.jl in Julia
|
|
// You can also use Mathematica
|
|
// But please do not use Excel or any other software without arbitrary precision
|
|
|
|
fn numbers_are_close(a: f64, b: f64) -> bool {
|
|
if a == b {
|
|
// avoid underflow if a = b = 0.0
|
|
return true;
|
|
}
|
|
(a - b).abs() / ((a * a + b * b).sqrt()) < EPS
|
|
}
|
|
|
|
fn numbers_are_somewhat_close(a: f64, b: f64) -> bool {
|
|
if a == b {
|
|
// avoid underflow if a = b = 0.0
|
|
return true;
|
|
}
|
|
(a - b).abs() / ((a * a + b * b).sqrt()) < EPS_LOW
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_j0_known_values() {
|
|
let cases = [
|
|
(2.4, 0.002507683297243813),
|
|
(0.5, 0.9384698072408129),
|
|
(1.0, 0.7651976865579666),
|
|
(1.12345, 0.7084999488947348),
|
|
(27.0, 0.07274191800588709),
|
|
(33.0, 0.09727067223550946),
|
|
(2e-4, 0.9999999900000001),
|
|
(0.0, 1.0),
|
|
(1e10, 2.175591750246892e-6),
|
|
];
|
|
for (value, known) in cases {
|
|
let f = j0(value);
|
|
assert!(
|
|
numbers_are_close(f, known),
|
|
"Got: {f}, expected: {known} for j0({value})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_y0_known_values() {
|
|
let cases = [
|
|
(2.4, 0.5104147486657438),
|
|
(0.5, -0.4445187335067065),
|
|
(1.0, 0.08825696421567692),
|
|
(1.12345, 0.1783162909790613),
|
|
(27.0, 0.1352149762078722),
|
|
(33.0, 0.0991348255208796),
|
|
(2e-4, -5.496017824512429),
|
|
(1e10, -7.676508175792937e-6),
|
|
(1e-300, -439.8351636227653),
|
|
];
|
|
for (value, known) in cases {
|
|
let f = y0(value);
|
|
assert!(
|
|
numbers_are_close(f, known),
|
|
"Got: {f}, expected: {known} for y0({value})"
|
|
);
|
|
}
|
|
assert!(y0(0.0).is_infinite());
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_j1_known_values() {
|
|
// Values computed with Maxima, the computer algebra system
|
|
// TODO: Recompute
|
|
let cases = [
|
|
(2.4, 0.5201852681819311),
|
|
(0.5, 0.2422684576748738),
|
|
(1.0, 0.4400505857449335),
|
|
(1.17232, 0.4910665691824317),
|
|
(27.5, 0.1521418932046569),
|
|
(42.0, -0.04599388822188721),
|
|
(3e-5, 1.499999999831249E-5),
|
|
(350.0, -0.02040531295214455),
|
|
(0.0, 0.0),
|
|
(1e12, -7.913802683850441e-7),
|
|
];
|
|
for (value, known) in cases {
|
|
let f = j1(value);
|
|
assert!(
|
|
numbers_are_close(f, known),
|
|
"Got: {f}, expected: {known} for j1({value})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_jn_known_values() {
|
|
// Values computed with Maxima, the computer algebra system
|
|
// TODO: Recompute
|
|
let cases = [
|
|
(3, 0.5, 0.002_563_729_994_587_244),
|
|
(4, 0.5, 0.000_160_736_476_364_287_6),
|
|
(-3, 0.5, -0.002_563_729_994_587_244),
|
|
(-4, 0.5, 0.000_160_736_476_364_287_6),
|
|
(3, 30.0, 0.129211228759725),
|
|
(-3, 30.0, -0.129211228759725),
|
|
(4, 30.0, -0.052609000321320355),
|
|
(20, 30.0, 0.0048310199934040645),
|
|
(7, 0.0, 0.0),
|
|
];
|
|
for (n, value, known) in cases {
|
|
let f = jn(n, value);
|
|
assert!(
|
|
numbers_are_close(f, known),
|
|
"Got: {f}, expected: {known} for jn({n}, {value})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_yn_known_values() {
|
|
let cases = [
|
|
(3, 0.5, -42.059494304723883),
|
|
(4, 0.5, -499.272_560_819_512_3),
|
|
(-3, 0.5, 42.059494304723883),
|
|
(-4, 0.5, -499.272_560_819_512_3),
|
|
(3, 35.0, -0.13191405300596323),
|
|
(-12, 12.2, -0.310438011314211),
|
|
(7, 1e12, 1.016_712_505_197_956_3e-7),
|
|
(35, 3.0, -6.895_879_073_343_495e31),
|
|
];
|
|
for (n, value, known) in cases {
|
|
let f = yn(n, value);
|
|
assert!(
|
|
numbers_are_close(f, known),
|
|
"Got: {f}, expected: {known} for yn({n}, {value})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_in_known_values() {
|
|
let cases = [
|
|
(1, 0.5, 0.2578943053908963),
|
|
(3, 0.5, 0.002645111968990286),
|
|
(7, 0.2, 1.986608521182497e-11),
|
|
(7, 0.0, 0.0),
|
|
(0, -0.5, 1.0634833707413236),
|
|
// worse case scenario
|
|
(0, 3.7499, 9.118167894541882),
|
|
(0, 3.7501, 9.119723897590003),
|
|
];
|
|
for (n, value, known) in cases {
|
|
let f = bessel_i(n, value);
|
|
assert!(
|
|
numbers_are_somewhat_close(f, known),
|
|
"Got: {f}, expected: {known} for in({n}, {value})"
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bessel_kn_known_values() {
|
|
let cases = [
|
|
(1, 0.5, 1.656441120003301),
|
|
(0, 0.5, 0.9244190712276659),
|
|
(3, 0.5, 62.05790952993026),
|
|
];
|
|
for (n, value, known) in cases {
|
|
let f = bessel_k(n, value);
|
|
assert!(
|
|
numbers_are_somewhat_close(f, known),
|
|
"Got: {f}, expected: {known} for kn({n}, {value})"
|
|
);
|
|
}
|
|
}
|