Files
IronCalc/base/src/functions/mathematical.rs
2025-10-30 23:45:29 +01:00

632 lines
23 KiB
Rust

use crate::cast::NumberOrArray;
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::number_format::to_precision;
use crate::single_number_fn;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
use std::f64::consts::PI;
#[cfg(not(target_arch = "wasm32"))]
pub fn random() -> f64 {
rand::random()
}
#[cfg(target_arch = "wasm32")]
pub fn random() -> f64 {
use js_sys::Math;
Math::random()
}
impl Model {
pub(crate) fn fn_min(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.min(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.min(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_max(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.max(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.max(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_sum(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result += value,
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO: We should do this for all functions that run through ranges
// Running cargo test for the ironcalc takes around .8 seconds with this speedup
// and ~ 3.5 seconds without it. Note that once properly in place sheet.dimension should be almost a noop
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result += value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
result += value;
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_product(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 1.0;
let mut seen_value = false;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if !seen_value {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
/// SUMIF(criteria_range, criteria, [sum_range])
/// if sum_rage is missing then criteria_range will be used
pub(crate) fn fn_sumif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
pub(crate) fn fn_sumifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let sum = |value| total += value;
if let Err(e) = self.apply_ifs(args, cell, sum) {
return e;
}
CalcResult::Number(total)
}
pub(crate) fn fn_round(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
// Incorrect number of arguments
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
CalcResult::Number((value * scale).round() / scale)
}
pub(crate) fn fn_roundup(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).ceil() / scale)
} else {
CalcResult::Number((value * scale).floor() / scale)
}
}
pub(crate) fn fn_rounddown(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).floor() / scale)
} else {
CalcResult::Number((value * scale).ceil() / scale)
}
}
single_number_fn!(fn_log10, |f| if f <= 0.0 {
Err(Error::NUM)
} else {
Ok(f64::log10(f))
});
single_number_fn!(fn_ln, |f| if f <= 0.0 {
Err(Error::NUM)
} else {
Ok(f64::ln(f))
});
single_number_fn!(fn_sin, |f| Ok(f64::sin(f)));
single_number_fn!(fn_cos, |f| Ok(f64::cos(f)));
single_number_fn!(fn_tan, |f| Ok(f64::tan(f)));
single_number_fn!(fn_sinh, |f| Ok(f64::sinh(f)));
single_number_fn!(fn_cosh, |f| Ok(f64::cosh(f)));
single_number_fn!(fn_tanh, |f| Ok(f64::tanh(f)));
single_number_fn!(fn_asin, |f| Ok(f64::asin(f)));
single_number_fn!(fn_acos, |f| Ok(f64::acos(f)));
single_number_fn!(fn_atan, |f| Ok(f64::atan(f)));
single_number_fn!(fn_asinh, |f| Ok(f64::asinh(f)));
single_number_fn!(fn_acosh, |f| Ok(f64::acosh(f)));
single_number_fn!(fn_atanh, |f| Ok(f64::atanh(f)));
single_number_fn!(fn_abs, |f| Ok(f64::abs(f)));
single_number_fn!(fn_sqrt, |f| if f < 0.0 {
Err(Error::NUM)
} else {
Ok(f64::sqrt(f))
});
single_number_fn!(fn_sqrtpi, |f: f64| if f < 0.0 {
Err(Error::NUM)
} else {
Ok((f * PI).sqrt())
});
single_number_fn!(fn_acot, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(f64::atan(1.0 / f))
});
single_number_fn!(fn_acoth, |f: f64| if f.abs() == 1.0 {
Err(Error::DIV)
} else {
Ok(0.5 * (f64::ln((f + 1.0) / (f - 1.0))))
});
single_number_fn!(fn_cot, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(f64::cos(f) / f64::sin(f))
});
single_number_fn!(fn_coth, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(f64::cosh(f) / f64::sinh(f))
});
single_number_fn!(fn_csc, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::sin(f))
});
single_number_fn!(fn_csch, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::sinh(f))
});
single_number_fn!(fn_sec, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::cos(f))
});
single_number_fn!(fn_sech, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::cosh(f))
});
single_number_fn!(fn_exp, |f: f64| Ok(f64::exp(f)));
single_number_fn!(fn_fact, |x: f64| {
let x = x.floor();
if x < 0.0 {
return Err(Error::NUM);
}
let mut acc = 1.0;
let mut k = 2.0;
while k <= x {
acc *= k;
k += 1.0;
}
Ok(acc)
});
single_number_fn!(fn_factdouble, |x: f64| {
let x = x.floor();
if x < -1.0 {
return Err(Error::NUM);
}
if x < 0.0 {
return Ok(1.0);
}
let mut acc = 1.0;
let mut k = if x % 2.0 == 0.0 { 2.0 } else { 1.0 };
while k <= x {
acc *= k;
k += 2.0;
}
Ok(acc)
});
single_number_fn!(fn_sign, |f| Ok(f64::signum(f)));
single_number_fn!(fn_degrees, |f| Ok(f * (180.0 / PI)));
single_number_fn!(fn_radians, |f| Ok(f * (PI / 180.0)));
pub(crate) fn fn_pi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(PI)
}
pub(crate) fn fn_atan2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
CalcResult::Number(f64::atan2(y, x))
}
pub(crate) fn fn_log(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let n_args = args.len();
if !(1..=2).contains(&n_args) {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = if n_args == 1 {
10.0
} else {
match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
}
};
if x <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Number must be positive".to_string(),
};
}
if y == 1.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Logarithm base cannot be 1".to_string(),
};
}
if y <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Logarithm base must be positive".to_string(),
};
}
CalcResult::Number(f64::log(x, y))
}
pub(crate) fn fn_power(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
if y == 0.0 {
return CalcResult::Number(1.0);
}
let result = x.powf(y);
if result.is_infinite() {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "POWER returned infinity".to_string(),
};
}
if result.is_nan() {
// This might happen for some combinations of negative base and exponent
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid arguments for POWER".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_rand(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(random())
}
// TODO: Add tests for RANDBETWEEN
pub(crate) fn fn_randbetween(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f.ceil() + 1.0,
Err(s) => return s,
};
if x > y {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: format!("{x}>{y}"),
};
}
CalcResult::Number((x + random() * (y - x)).floor())
}
}