Uses statrs for numerical functions REFACTOR: Put statistical functions on its own module This might seem counter-intuitive but the wasm build after this refactor is 1528 bytes smaller :)
42 lines
1.3 KiB
Rust
42 lines
1.3 KiB
Rust
#![allow(clippy::unwrap_used)]
|
|
|
|
use crate::test::util::new_empty_model;
|
|
|
|
#[test]
|
|
fn test_fn_poisson_dist_smoke() {
|
|
let mut model = new_empty_model();
|
|
|
|
// λ = 2, x = 3
|
|
// P(X = 3) ≈ 0.180447045
|
|
// P(X <= 3) ≈ 0.857123461
|
|
model._set("A1", "=POISSON.DIST(3, 2, FALSE)");
|
|
model._set("A2", "=POISSON.DIST(3, 2, TRUE)");
|
|
|
|
// Wrong arg count
|
|
model._set("A3", "=POISSON.DIST(3, 2)");
|
|
model._set("A4", "=POISSON.DIST(3, 2, TRUE, FALSE)");
|
|
|
|
// Domain errors
|
|
model._set("A5", "=POISSON.DIST(-1, 2, TRUE)"); // x < 0
|
|
model._set("A6", "=POISSON.DIST(3, -2, TRUE)"); // mean < 0
|
|
|
|
// λ = 0 special cases
|
|
model._set("A7", "=POISSON.DIST(0, 0, FALSE)"); // 1
|
|
model._set("A8", "=POISSON.DIST(1, 0, FALSE)"); // 0
|
|
model._set("A9", "=POISSON.DIST(5, 0, TRUE)"); // 1
|
|
|
|
model.evaluate();
|
|
|
|
assert_eq!(model._get_text("A1"), *"0.180447044");
|
|
assert_eq!(model._get_text("A2"), *"0.85712346");
|
|
|
|
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
|
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
|
assert_eq!(model._get_text("A5"), *"#NUM!");
|
|
assert_eq!(model._get_text("A6"), *"#NUM!");
|
|
|
|
assert_eq!(model._get_text("A7"), *"1");
|
|
assert_eq!(model._get_text("A8"), *"0");
|
|
assert_eq!(model._get_text("A9"), *"1");
|
|
}
|