Files
IronCalc/base/src/test/statistical/test_fn_norm_dist.rs
Nicolás Hatcher 6822505602 UPDATE: Adds 56 functions in the Statistical section
Uses statrs for numerical functions

REFACTOR: Put statistical functions on its own module

This might seem counter-intuitive but the wasm build after this refactor
is 1528 bytes smaller :)
2025-11-25 01:20:03 +01:00

120 lines
3.5 KiB
Rust

#![allow(clippy::unwrap_used)]
use crate::test::util::new_empty_model;
#[test]
fn test_fn_norm_dist_smoke() {
let mut model = new_empty_model();
// Valid: standard normal as a special case
model._set("A1", "=NORM.DIST(1, 0, 1, TRUE)");
model._set("A2", "=NORM.DIST(1, 0, 1, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.DIST(1, 0, 1)");
model._set("A4", "=NORM.DIST(1, 0, 1, TRUE, FALSE)");
// Domain errors: standard_dev <= 0 -> #NUM!
model._set("A5", "=NORM.DIST(1, 0, 0, TRUE)");
model._set("A6", "=NORM.DIST(1, 0, -1, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.841344746");
assert_eq!(model._get_text("A2"), *"0.241970725");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}
#[test]
fn test_fn_norm_inv_smoke() {
let mut model = new_empty_model();
// Valid: median of standard normal
model._set("A1", "=NORM.INV(0.5, 0, 1)");
// Wrong number of arguments -> #ERROR!
model._set("A2", "=NORM.INV(0.5, 0)");
model._set("A3", "=NORM.INV(0.5, 0, 1, 0)");
// Domain errors:
// probability <= 0 or >= 1 -> #NUM!
model._set("A4", "=NORM.INV(0, 0, 1)");
model._set("A5", "=NORM.INV(1, 0, 1)");
// standard_dev <= 0 -> #NUM!
model._set("A6", "=NORM.INV(0.5, 0, 0)");
model._set("A7", "=NORM.INV(0.7, 0.2, 1)");
model._set("A8", "=NORM.INV(0.7, 0.2, 5)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
assert_eq!(model._get_text("A2"), *"#ERROR!");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#NUM!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
assert_eq!(model._get_text("A7"), *"0.724400513");
assert_eq!(model._get_text("A8"), *"2.822002564");
}
#[test]
fn test_fn_norm_s_dist_smoke() {
let mut model = new_empty_model();
// Valid: CDF and PDF at z = 0
model._set("A1", "=NORM.S.DIST(0, TRUE)");
model._set("A2", "=NORM.S.DIST(0, FALSE)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.DIST(0)");
model._set("A4", "=NORM.S.DIST(0, TRUE, FALSE)");
model._set("A5", "=NORM.S.DIST(0.2, FALSE)");
model._set("A6", "=NORM.S.DIST(2.2, TRUE)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0.5");
assert_eq!(model._get_text("A2"), *"0.39894228");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"0.391042694");
assert_eq!(model._get_text("A6"), *"0.986096552");
}
#[test]
fn test_fn_norm_s_inv_smoke() {
let mut model = new_empty_model();
// Valid: symmetric points
model._set("A1", "=NORM.S.INV(0.5)");
model._set("A2", "=NORM.S.INV(0.841344746)");
// Wrong number of arguments -> #ERROR!
model._set("A3", "=NORM.S.INV()");
model._set("A4", "=NORM.S.INV(0.5, 0)");
// Domain errors: probability <= 0 or >= 1 -> #NUM!
model._set("A5", "=NORM.S.INV(0)");
model._set("A6", "=NORM.S.INV(1)");
model.evaluate();
assert_eq!(model._get_text("A1"), *"0");
// Approximately 1
assert_eq!(model._get_text("A2"), *"1");
assert_eq!(model._get_text("A3"), *"#ERROR!");
assert_eq!(model._get_text("A4"), *"#ERROR!");
assert_eq!(model._get_text("A5"), *"#NUM!");
assert_eq!(model._get_text("A6"), *"#NUM!");
}