Files
IronCalc/base/src/functions/mathematical.rs
Nicolás Hatcher acb90fbb9d FIX: Issues with trigonometric functions
* Right branch for ACOT for negative numbers
* correct error for ACOTH
* Correct approx for COTH for x > 20
2025-11-19 23:53:07 +01:00

1661 lines
59 KiB
Rust

use crate::cast::NumberOrArray;
use crate::constants::{LAST_COLUMN, LAST_ROW};
use crate::expressions::parser::ArrayNode;
use crate::expressions::types::CellReferenceIndex;
use crate::functions::math_util::{from_roman, to_roman_with_form};
use crate::number_format::to_precision;
use crate::single_number_fn;
use crate::{
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
};
use std::f64::consts::PI;
#[cfg(not(target_arch = "wasm32"))]
pub fn random() -> f64 {
rand::random()
}
// Euclidean gcd for i64 (non-negative inputs expected)
fn gcd_i64(mut a: i64, mut b: i64) -> i64 {
while b != 0 {
let r = a % b;
a = b;
b = r;
}
a
}
// lcm(a, b) = a / gcd(a, b) * b
// we do it in i128 to reduce overflow risk, then back to i64/f64
fn lcm_i64(a: i64, b: i64) -> Option<i64> {
if a == 0 || b == 0 {
return Some(0);
}
let g = gcd_i64(a, b);
let a_div_g = (a / g) as i128;
let prod = a_div_g * (b as i128);
if prod > i64::MAX as i128 {
None
} else {
Some(prod as i64)
}
}
#[cfg(target_arch = "wasm32")]
pub fn random() -> f64 {
use js_sys::Math;
Math::random()
}
impl Model {
pub(crate) fn fn_min(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.min(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.min(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_max(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut result = f64::NAN;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result = value.max(result),
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
for row in left.row..(right.row + 1) {
for column in left.column..(right.column + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result = value.max(result);
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if result.is_nan() || result.is_infinite() {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_base(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if !(2..=3).contains(&arg_count) {
return CalcResult::new_args_number_error(cell);
}
// number to convert
let mut value = match self.get_number(&args[0], cell) {
Ok(f) => f.trunc() as i64,
Err(s) => return s,
};
// radix
let radix = match self.get_number(&args[1], cell) {
Ok(f) => f.trunc() as i64,
Err(s) => return s,
};
// optional min_length
let min_length = if arg_count == 3 {
match self.get_number(&args[2], cell) {
Ok(f) => {
if f < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Minimum length must be non-negative".to_string(),
};
}
f.trunc() as usize
}
Err(s) => return s,
}
} else {
0
};
if !(2..=36).contains(&radix) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Radix must be between 2 and 36".to_string(),
};
}
// number must be >= 0
if value < 0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Number must be non-negative".to_string(),
};
}
let mut buf = String::new();
if value == 0 {
buf.push('0');
} else {
while value > 0 {
let digit = (value % radix) as u8;
let ch = match digit {
0..=9 => (b'0' + digit) as char,
10..=35 => (b'A' + (digit - 10)) as char,
_ => unreachable!(),
};
buf.push(ch);
value /= radix;
}
// we built it in reverse
buf = buf.chars().rev().collect();
}
// pad with leading zeros if needed
if buf.len() < min_length {
let mut padded = String::with_capacity(min_length);
for _ in 0..(min_length - buf.len()) {
padded.push('0');
}
padded.push_str(&buf);
buf = padded;
}
CalcResult::String(buf)
}
pub(crate) fn fn_decimal(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let text = match self.get_string(&args[0], cell) {
Ok(s) => s,
Err(s) => return s,
};
let radix = match self.get_number(&args[1], cell) {
Ok(f) => f.trunc() as i32,
Err(s) => return s,
};
if !(2..=36).contains(&radix) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Radix must be between 2 and 36".to_string(),
};
}
match i64::from_str_radix(&text, radix as u32) {
Ok(n) => CalcResult::Number(n as f64),
Err(_) => CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: format!("'{}' is not a valid number in base {}", text, radix),
},
}
}
pub(crate) fn fn_gcd(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut acc: Option<i64> = None;
let mut saw_number = false;
let mut has_range = false;
// Returns Some(CalcResult) if an error occurred
let mut handle_number = |value: f64| -> Option<CalcResult> {
if !value.is_finite() {
return Some(CalcResult::new_error(
Error::VALUE,
cell,
"Non-finite number in GCD".to_string(),
));
}
let n = value.trunc() as i64;
if n < 0 {
return Some(CalcResult::new_error(
Error::NUM,
cell,
"GCD only accepts non-negative integers".to_string(),
));
}
saw_number = true;
acc = Some(match acc {
Some(cur) => gcd_i64(cur, n),
None => n,
});
None
};
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
has_range = true;
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..=row2 {
for column in column1..=column2 {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore strings / booleans
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore strings / booleans
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore strings / booleans
}
}
}
if !saw_number && !has_range {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "No valid numbers found".to_string(),
};
}
CalcResult::Number(acc.unwrap_or(0) as f64)
}
pub(crate) fn fn_lcm(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut acc: Option<i64> = None;
let mut saw_number = false;
let mut has_range = false;
// Returns Some(CalcResult) if an error occurred
let mut handle_number = |value: f64| -> Option<CalcResult> {
if !value.is_finite() {
return Some(CalcResult::new_error(
Error::VALUE,
cell,
"Non-finite number in LCM".to_string(),
));
}
let n = value.trunc() as i64;
if n < 0 {
return Some(CalcResult::new_error(
Error::NUM,
cell,
"LCM only accepts non-negative integers".to_string(),
));
}
saw_number = true;
acc = Some(match acc {
Some(cur) => match lcm_i64(cur, n) {
Some(v) => v,
None => {
return Some(CalcResult::new_error(
Error::NUM,
cell,
"LCM result too large".to_string(),
));
}
},
None => n,
});
None
};
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
has_range = true;
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..=row2 {
for column in column1..=column2 {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore strings / booleans
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
if let Some(res) = handle_number(value) {
return res;
}
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// ignore strings / booleans
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// ignore strings / booleans
}
}
}
if !saw_number && !has_range {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "No valid numbers found".to_string(),
};
}
CalcResult::Number(acc.unwrap_or(0) as f64)
}
pub(crate) fn fn_sum(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result += value,
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO: We should do this for all functions that run through ranges
// Running cargo test for the ironcalc takes around .8 seconds with this speedup
// and ~ 3.5 seconds without it. Note that once properly in place sheet.dimension should be almost a noop
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result += value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
result += value;
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_sumsq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 0.0;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => result += value * value,
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
// TODO: We should do this for all functions that run through ranges
// Running cargo test for the ironcalc takes around .8 seconds with this speedup
// and ~ 3.5 seconds without it. Note that once properly in place sheet.dimension should be almost a noop
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
result += value * value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
CalcResult::Array(array) => {
for row in array {
for value in row {
match value {
ArrayNode::Number(value) => {
result += value * value;
}
ArrayNode::Error(error) => {
return CalcResult::Error {
error,
origin: cell,
message: "Error in array".to_string(),
}
}
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_product(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
let mut result = 1.0;
let mut seen_value = false;
for arg in args {
match self.evaluate_node_in_context(arg, cell) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
CalcResult::Range { left, right } => {
if left.sheet != right.sheet {
return CalcResult::new_error(
Error::VALUE,
cell,
"Ranges are in different sheets".to_string(),
);
}
let row1 = left.row;
let mut row2 = right.row;
let column1 = left.column;
let mut column2 = right.column;
if row1 == 1 && row2 == LAST_ROW {
row2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_row,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
if column1 == 1 && column2 == LAST_COLUMN {
column2 = match self.workbook.worksheet(left.sheet) {
Ok(s) => s.dimension().max_column,
Err(_) => {
return CalcResult::new_error(
Error::ERROR,
cell,
format!("Invalid worksheet index: '{}'", left.sheet),
);
}
};
}
for row in row1..row2 + 1 {
for column in column1..(column2 + 1) {
match self.evaluate_cell(CellReferenceIndex {
sheet: left.sheet,
row,
column,
}) {
CalcResult::Number(value) => {
seen_value = true;
result *= value;
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
}
}
}
}
error @ CalcResult::Error { .. } => return error,
_ => {
// We ignore booleans and strings
}
};
}
if !seen_value {
return CalcResult::Number(0.0);
}
CalcResult::Number(result)
}
/// SUMIF(criteria_range, criteria, [sum_range])
/// if sum_rage is missing then criteria_range will be used
pub(crate) fn fn_sumif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() == 2 {
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else if args.len() == 3 {
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
self.fn_sumifs(&arguments, cell)
} else {
CalcResult::new_args_number_error(cell)
}
}
/// SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)
pub(crate) fn fn_sumifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let mut total = 0.0;
let sum = |value| total += value;
if let Err(e) = self.apply_ifs(args, cell, sum) {
return e;
}
CalcResult::Number(total)
}
pub(crate) fn fn_round(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
// Incorrect number of arguments
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
CalcResult::Number((value * scale).round() / scale)
}
pub(crate) fn fn_roundup(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).ceil() / scale)
} else {
CalcResult::Number((value * scale).floor() / scale)
}
}
pub(crate) fn fn_rounddown(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => to_precision(f, 15),
Err(s) => return s,
};
let number_of_digits = match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
};
let scale = 10.0_f64.powf(number_of_digits);
if value > 0.0 {
CalcResult::Number((value * scale).floor() / scale)
} else {
CalcResult::Number((value * scale).ceil() / scale)
}
}
// (number, divisor)
pub(crate) fn fn_mod(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let divisor = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if divisor == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Divide by 0".to_string(),
};
}
let result = value - divisor * (value / divisor).floor();
CalcResult::Number(result)
}
pub(crate) fn fn_quotient(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number_no_bools(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let divisor = match self.get_number_no_bools(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if divisor == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Divide by 0".to_string(),
};
}
let result = value / divisor;
CalcResult::Number(result.signum() * result.abs().floor())
}
pub(crate) fn fn_floor(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if significance == 0.0 {
if value == 0.0 {
return CalcResult::Number(0.0);
}
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Divide by 0".to_string(),
};
}
if significance < 0.0 && value > 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Significance must be positive when value is positive".to_string(),
};
}
let result = f64::floor(value / significance) * significance;
CalcResult::Number(result)
}
pub(crate) fn fn_ceiling(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if significance == 0.0 {
// This behaviour is different from FLOOR where division by zero returns an error
return CalcResult::Number(0.0);
}
if significance < 0.0 && value > 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Significance must be positive when value is positive".to_string(),
};
}
let result = f64::ceil(value / significance) * significance;
CalcResult::Number(result)
}
pub(crate) fn fn_ceiling_math(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 3 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = if arg_count > 1 {
match self.get_number(&args[1], cell) {
Ok(f) => f.abs(),
Err(s) => return s,
}
} else {
1.0
};
let mode = if arg_count > 2 {
match self.get_number(&args[2], cell) {
Ok(f) => f,
Err(s) => return s,
}
} else {
0.0
};
if significance == 0.0 {
return CalcResult::Number(0.0);
}
if value < 0.0 && mode != 0.0 {
let result = f64::floor(value / significance) * significance;
CalcResult::Number(result)
} else {
let result = f64::ceil(value / significance) * significance;
CalcResult::Number(result)
}
}
pub(crate) fn fn_ceiling_precise(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = if arg_count > 1 {
match self.get_number(&args[1], cell) {
Ok(f) => f.abs(),
Err(s) => return s,
}
} else {
1.0
};
if significance == 0.0 {
return CalcResult::Number(0.0);
}
let result = f64::ceil(value / significance) * significance;
CalcResult::Number(result)
}
pub(crate) fn fn_iso_ceiling(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// ISO.CEILING is equivalent to CEILING.PRECISE
self.fn_ceiling_precise(args, cell)
}
pub(crate) fn fn_floor_math(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let arg_count = args.len();
if arg_count > 3 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = if arg_count > 1 {
match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
}
} else {
1.0
};
let mode = if arg_count > 2 {
match self.get_number(&args[2], cell) {
Ok(f) => f,
Err(s) => return s,
}
} else {
0.0
};
if significance == 0.0 {
return CalcResult::Number(0.0);
}
let significance = significance.abs();
if value < 0.0 && mode != 0.0 {
let result = f64::ceil(value / significance) * significance;
CalcResult::Number(result)
} else {
let result = f64::floor(value / significance) * significance;
CalcResult::Number(result)
}
}
pub(crate) fn fn_floor_precise(
&mut self,
args: &[Node],
cell: CellReferenceIndex,
) -> CalcResult {
let arg_count = args.len();
if arg_count > 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let significance = if arg_count > 1 {
match self.get_number(&args[1], cell) {
Ok(f) => f.abs(),
Err(s) => return s,
}
} else {
1.0
};
if significance == 0.0 {
return CalcResult::Number(0.0);
}
let result = f64::floor(value / significance) * significance;
CalcResult::Number(result)
}
pub(crate) fn fn_mround(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
// MROUND(number, multiple)
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let value = self.evaluate_node_in_context(&args[0], cell);
let multiple = self.evaluate_node_in_context(&args[1], cell);
// if either is empty => #N/A
if matches!(value, CalcResult::EmptyArg) || matches!(multiple, CalcResult::EmptyArg) {
return CalcResult::Error {
error: Error::NA,
origin: cell,
message: "Bad argument for MROUND".to_string(),
};
}
// Booleans are not cast
if matches!(value, CalcResult::Boolean(_)) {
return CalcResult::new_error(Error::VALUE, cell, "Expecting number".to_string());
}
if matches!(multiple, CalcResult::Boolean(_)) {
return CalcResult::new_error(Error::VALUE, cell, "Expecting number".to_string());
}
let value = match self.cast_to_number(value, cell) {
Ok(f) => f,
Err(s) => return s,
};
let multiple = match self.cast_to_number(multiple, cell) {
Ok(f) => f,
Err(s) => return s,
};
if multiple == 0.0 {
return CalcResult::Number(0.0);
}
if (value > 0.0 && multiple < 0.0) || (value < 0.0 && multiple > 0.0) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "number and multiple must have the same sign".to_string(),
};
}
let result = (value / multiple).round() * multiple;
CalcResult::Number(result)
}
pub(crate) fn fn_trunc(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() > 2 {
return CalcResult::new_args_number_error(cell);
}
let value = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let num_digits = if args.len() == 2 {
match self.get_number(&args[1], cell) {
Ok(f) => {
if f > 0.0 {
f.floor()
} else {
f.ceil()
}
}
Err(s) => return s,
}
} else {
0.0
};
if !(-15.0..=15.0).contains(&num_digits) {
return CalcResult::Number(value);
}
let v = if value >= 0.0 {
f64::floor(value * 10f64.powf(num_digits)) / 10f64.powf(num_digits)
} else {
f64::ceil(value * 10f64.powf(num_digits)) / 10f64.powf(num_digits)
};
if value.is_finite() && v.is_infinite() {
return CalcResult::Number(value);
}
CalcResult::Number(v)
}
single_number_fn!(fn_log10, |f| if f <= 0.0 {
Err(Error::NUM)
} else {
Ok(f64::log10(f))
});
single_number_fn!(fn_ln, |f| if f <= 0.0 {
Err(Error::NUM)
} else {
Ok(f64::ln(f))
});
single_number_fn!(fn_sin, |f| Ok(f64::sin(f)));
single_number_fn!(fn_cos, |f| Ok(f64::cos(f)));
single_number_fn!(fn_tan, |f| Ok(f64::tan(f)));
single_number_fn!(fn_sinh, |f| Ok(f64::sinh(f)));
single_number_fn!(fn_cosh, |f| Ok(f64::cosh(f)));
single_number_fn!(fn_tanh, |f| Ok(f64::tanh(f)));
single_number_fn!(fn_asin, |f| Ok(f64::asin(f)));
single_number_fn!(fn_acos, |f| Ok(f64::acos(f)));
single_number_fn!(fn_atan, |f| Ok(f64::atan(f)));
single_number_fn!(fn_asinh, |f| Ok(f64::asinh(f)));
single_number_fn!(fn_acosh, |f| Ok(f64::acosh(f)));
single_number_fn!(fn_atanh, |f| Ok(f64::atanh(f)));
single_number_fn!(fn_abs, |f| Ok(f64::abs(f)));
single_number_fn!(fn_sqrt, |f| if f < 0.0 {
Err(Error::NUM)
} else {
Ok(f64::sqrt(f))
});
single_number_fn!(fn_sqrtpi, |f: f64| if f < 0.0 {
Err(Error::NUM)
} else {
Ok((f * PI).sqrt())
});
single_number_fn!(fn_acot, |f| {
let v = f64::atan(1.0 / f);
if f >= 0.0 {
Ok(v)
} else {
// To be compatible with Excel we need a different branch
// when f < 0
Ok(v + PI)
}
});
single_number_fn!(fn_acoth, |f: f64| if f.abs() == 1.0 {
Err(Error::NUM)
} else {
Ok(0.5 * (f64::ln((f + 1.0) / (f - 1.0))))
});
single_number_fn!(fn_cot, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(f64::cos(f) / f64::sin(f))
});
single_number_fn!(fn_coth, |f: f64| if f == 0.0 {
Err(Error::DIV)
} else if f.abs() > 20.0 {
// for values > 20.0 this is exact in f64
Ok(f.signum())
} else {
Ok(f64::cosh(f) / f64::sinh(f))
});
single_number_fn!(fn_csc, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::sin(f))
});
single_number_fn!(fn_csch, |f| if f == 0.0 {
Err(Error::DIV)
} else {
Ok(1.0 / f64::sinh(f))
});
single_number_fn!(fn_sec, |f| Ok(1.0 / f64::cos(f)));
single_number_fn!(fn_sech, |f| Ok(1.0 / f64::cosh(f)));
single_number_fn!(fn_exp, |f: f64| Ok(f64::exp(f)));
single_number_fn!(fn_fact, |x: f64| {
let x = x.floor();
if x < 0.0 {
return Err(Error::NUM);
}
let mut acc = 1.0;
let mut k = 2.0;
while k <= x {
acc *= k;
k += 1.0;
}
Ok(acc)
});
single_number_fn!(fn_factdouble, |x: f64| {
let x = x.floor();
if x < -1.0 {
return Err(Error::NUM);
}
if x < 0.0 {
return Ok(1.0);
}
let mut acc = 1.0;
let mut k = if x % 2.0 == 0.0 { 2.0 } else { 1.0 };
while k <= x {
acc *= k;
k += 2.0;
}
Ok(acc)
});
single_number_fn!(fn_sign, |f| {
if f == 0.0 {
Ok(0.0)
} else {
Ok(f64::signum(f))
}
});
single_number_fn!(fn_degrees, |f| Ok(f * (180.0 / PI)));
single_number_fn!(fn_radians, |f| Ok(f * (PI / 180.0)));
single_number_fn!(fn_odd, |f| {
let sign = f64::signum(f);
Ok(sign * (f64::ceil((f64::abs(f) - 1.0) / 2.0) * 2.0 + 1.0))
});
single_number_fn!(fn_even, |f| Ok(f64::signum(f)
* f64::ceil(f64::abs(f) / 2.0)
* 2.0));
single_number_fn!(fn_int, |f| Ok(f64::floor(f)));
pub(crate) fn fn_pi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(PI)
}
pub(crate) fn fn_atan2(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
CalcResult::Number(f64::atan2(y, x))
}
pub(crate) fn fn_log(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
let n_args = args.len();
if !(1..=2).contains(&n_args) {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = if n_args == 1 {
10.0
} else {
match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
}
};
if x <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Number must be positive".to_string(),
};
}
if y == 1.0 {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "Logarithm base cannot be 1".to_string(),
};
}
if y <= 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Logarithm base must be positive".to_string(),
};
}
CalcResult::Number(f64::log(x, y))
}
pub(crate) fn fn_power(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f,
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f,
Err(s) => return s,
};
if x == 0.0 && y == 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Arguments can't be both zero".to_string(),
};
}
if y == 0.0 {
return CalcResult::Number(1.0);
}
let result = x.powf(y);
if result.is_infinite() {
return CalcResult::Error {
error: Error::DIV,
origin: cell,
message: "POWER returned infinity".to_string(),
};
}
if result.is_nan() {
// This might happen for some combinations of negative base and exponent
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Invalid arguments for POWER".to_string(),
};
}
CalcResult::Number(result)
}
pub(crate) fn fn_rand(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if !args.is_empty() {
return CalcResult::new_args_number_error(cell);
}
CalcResult::Number(random())
}
// TODO: Add tests for RANDBETWEEN
pub(crate) fn fn_randbetween(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let x = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
let y = match self.get_number(&args[1], cell) {
Ok(f) => f.ceil() + 1.0,
Err(s) => return s,
};
if x > y {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: format!("{x}>{y}"),
};
}
CalcResult::Number((x + random() * (y - x)).floor())
}
pub(crate) fn fn_roman(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.is_empty() || args.len() > 2 {
return CalcResult::new_args_number_error(cell);
}
let number = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
if number == 0.0 {
return CalcResult::String(String::new());
}
if !(0.0..=3999.0).contains(&number) {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Number must be between 0 and 3999".to_string(),
};
}
let form = if args.len() == 2 {
let mut t = match self.get_number(&args[1], cell) {
Ok(f) => f as i32,
Err(s) => return s,
};
// If the value is a boolean TRUE/FALSE, convert to 0/4
if t == 0 || t == 1 {
if let CalcResult::Boolean(b) = self.evaluate_node_in_context(&args[1], cell) {
if b {
// classic form
t = 0;
} else {
// simplified form
t = 4;
}
}
}
t
} else {
0
};
if !(0..=4).contains(&form) {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Form must be between 0 and 4".to_string(),
};
}
let roman_numeral = match to_roman_with_form(number as u32, form) {
Ok(s) => s,
Err(e) => {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: format!("Could not convert to Roman numeral: {e}"),
}
}
};
CalcResult::String(roman_numeral)
}
pub(crate) fn fn_arabic(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 1 {
return CalcResult::new_args_number_error(cell);
}
let roman_numeral = match self.evaluate_node_in_context(&args[0], cell) {
CalcResult::String(s) => s,
error @ CalcResult::Error { .. } => return error,
_ => {
return CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: "Argument must be a text string".to_string(),
}
}
};
if roman_numeral.is_empty() {
return CalcResult::Number(0.0);
}
match from_roman(&roman_numeral) {
Ok(value) => CalcResult::Number(value as f64),
Err(e) => CalcResult::Error {
error: Error::VALUE,
origin: cell,
message: format!("Invalid Roman numeral: {e}"),
},
}
}
pub(crate) fn fn_combin(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let n = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
let k = match self.get_number(&args[1], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
if n < 0.0 || k < 0.0 {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Arguments must be non-negative integers".to_string(),
};
}
if k > n {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "k cannot be greater than n".to_string(),
};
}
let k = k as usize;
let mut result = 1.0;
for i in 0..k {
let t = i as f64;
result *= (n - t) / (t + 1.0);
}
CalcResult::Number(result)
}
pub(crate) fn fn_combina(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
if args.len() != 2 {
return CalcResult::new_args_number_error(cell);
}
let n = match self.get_number(&args[0], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
let k = match self.get_number(&args[1], cell) {
Ok(f) => f.floor(),
Err(s) => return s,
};
if n < 0.0 || k < 0.0 || (n == 0.0 && k > 0.0) {
return CalcResult::Error {
error: Error::NUM,
origin: cell,
message: "Arguments must be non-negative integers".to_string(),
};
}
let k = k as usize;
let mut result = 1.0;
for i in 0..k {
let t = i as f64;
result *= (n + t) / (t + 1.0);
}
CalcResult::Number(result)
}
}