Compare commits
4 Commits
dani/widge
...
fact_gamma
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a00ecfdade | ||
|
|
e61b15655a | ||
|
|
6822505602 | ||
|
|
67ef3bcf87 |
@@ -711,6 +711,7 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
|
||||
Function::Value => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::Valuetotext => args_signature_scalars(arg_count, 1, 1),
|
||||
Function::Average => vec![Signature::Vector; arg_count],
|
||||
Function::Avedev => vec![Signature::Vector; arg_count],
|
||||
Function::Averagea => vec![Signature::Vector; arg_count],
|
||||
Function::Averageif => args_signature_sumif(arg_count),
|
||||
Function::Averageifs => vec![Signature::Vector; arg_count],
|
||||
@@ -889,6 +890,105 @@ fn get_function_args_signature(kind: &Function, arg_count: usize) -> Vec<Signatu
|
||||
Function::Dvar => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
|
||||
Function::Dvarp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
|
||||
Function::Dstdevp => vec![Signature::Vector, Signature::Scalar, Signature::Vector],
|
||||
|
||||
Function::BetaDist => args_signature_scalars(arg_count, 4, 2),
|
||||
Function::BetaInv => args_signature_scalars(arg_count, 3, 2),
|
||||
Function::BinomDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::BinomDistRange => args_signature_scalars(arg_count, 3, 1),
|
||||
Function::BinomInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::ChisqDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::ChisqDistRT => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::ChisqInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::ChisqInvRT => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::ChisqTest => {
|
||||
if arg_count == 2 {
|
||||
vec![Signature::Vector, Signature::Vector]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
Function::ConfidenceNorm => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::ConfidenceT => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::CovarianceP => {
|
||||
if arg_count == 2 {
|
||||
vec![Signature::Vector, Signature::Vector]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
Function::CovarianceS => {
|
||||
if arg_count == 2 {
|
||||
vec![Signature::Vector, Signature::Vector]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
Function::Devsq => vec![Signature::Vector; arg_count],
|
||||
Function::ExponDist => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::FDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::FDistRT => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::FInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::FInvRT => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::Fisher => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::FisherInv => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::Gamma => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::GammaDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::GammaInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::GammaLn => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::GammaLnPrecise => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::HypGeomDist => args_signature_scalars(arg_count, 5, 0),
|
||||
Function::LogNormDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::LogNormInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::NegbinomDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::NormDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::NormInv => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::NormSdist => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::NormSInv => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::Pearson => {
|
||||
if arg_count == 2 {
|
||||
vec![Signature::Vector, Signature::Vector]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
Function::Phi => args_signature_scalars(arg_count, 1, 0),
|
||||
Function::PoissonDist => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::Standardize => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::StDevP => vec![Signature::Vector; arg_count],
|
||||
Function::StDevS => vec![Signature::Vector; arg_count],
|
||||
Function::Stdeva => vec![Signature::Vector; arg_count],
|
||||
Function::Stdevpa => vec![Signature::Vector; arg_count],
|
||||
Function::TDist => args_signature_scalars(arg_count, 3, 0),
|
||||
Function::TDist2T => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::TDistRT => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::TInv => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::TInv2T => args_signature_scalars(arg_count, 2, 0),
|
||||
Function::TTest => {
|
||||
if arg_count == 4 {
|
||||
vec![
|
||||
Signature::Vector,
|
||||
Signature::Vector,
|
||||
Signature::Scalar,
|
||||
Signature::Scalar,
|
||||
]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
Function::VarP => vec![Signature::Vector; arg_count],
|
||||
Function::VarS => vec![Signature::Vector; arg_count],
|
||||
Function::VarpA => vec![Signature::Vector; arg_count],
|
||||
Function::VarA => vec![Signature::Vector; arg_count],
|
||||
Function::WeibullDist => args_signature_scalars(arg_count, 4, 0),
|
||||
Function::ZTest => {
|
||||
if arg_count == 2 {
|
||||
vec![Signature::Vector, Signature::Scalar]
|
||||
} else if arg_count == 3 {
|
||||
vec![Signature::Vector, Signature::Scalar, Signature::Scalar]
|
||||
} else {
|
||||
vec![Signature::Error; arg_count]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -990,6 +1090,7 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
|
||||
Function::Valuetotext => not_implemented(args),
|
||||
Function::Average => not_implemented(args),
|
||||
Function::Averagea => not_implemented(args),
|
||||
Function::Avedev => not_implemented(args),
|
||||
Function::Averageif => not_implemented(args),
|
||||
Function::Averageifs => not_implemented(args),
|
||||
Function::Count => not_implemented(args),
|
||||
@@ -1165,5 +1266,61 @@ fn static_analysis_on_function(kind: &Function, args: &[Node]) -> StaticResult {
|
||||
Function::Dvar => not_implemented(args),
|
||||
Function::Dvarp => not_implemented(args),
|
||||
Function::Dstdevp => not_implemented(args),
|
||||
|
||||
Function::BetaDist => StaticResult::Scalar,
|
||||
Function::BetaInv => StaticResult::Scalar,
|
||||
Function::BinomDist => StaticResult::Scalar,
|
||||
Function::BinomDistRange => StaticResult::Scalar,
|
||||
Function::BinomInv => StaticResult::Scalar,
|
||||
Function::ChisqDist => StaticResult::Scalar,
|
||||
Function::ChisqDistRT => StaticResult::Scalar,
|
||||
Function::ChisqInv => StaticResult::Scalar,
|
||||
Function::ChisqInvRT => StaticResult::Scalar,
|
||||
Function::ChisqTest => StaticResult::Scalar,
|
||||
Function::ConfidenceNorm => StaticResult::Scalar,
|
||||
Function::ConfidenceT => StaticResult::Scalar,
|
||||
Function::CovarianceP => StaticResult::Scalar,
|
||||
Function::CovarianceS => StaticResult::Scalar,
|
||||
Function::Devsq => StaticResult::Scalar,
|
||||
Function::ExponDist => StaticResult::Scalar,
|
||||
Function::FDist => StaticResult::Scalar,
|
||||
Function::FDistRT => StaticResult::Scalar,
|
||||
Function::FInv => StaticResult::Scalar,
|
||||
Function::FInvRT => StaticResult::Scalar,
|
||||
Function::Fisher => StaticResult::Scalar,
|
||||
Function::FisherInv => StaticResult::Scalar,
|
||||
Function::Gamma => StaticResult::Scalar,
|
||||
Function::GammaDist => StaticResult::Scalar,
|
||||
Function::GammaInv => StaticResult::Scalar,
|
||||
Function::GammaLn => StaticResult::Scalar,
|
||||
Function::GammaLnPrecise => StaticResult::Scalar,
|
||||
Function::HypGeomDist => StaticResult::Scalar,
|
||||
Function::LogNormDist => StaticResult::Scalar,
|
||||
Function::LogNormInv => StaticResult::Scalar,
|
||||
Function::NegbinomDist => StaticResult::Scalar,
|
||||
Function::NormDist => StaticResult::Scalar,
|
||||
Function::NormInv => StaticResult::Scalar,
|
||||
Function::NormSdist => StaticResult::Scalar,
|
||||
Function::NormSInv => StaticResult::Scalar,
|
||||
Function::Pearson => StaticResult::Scalar,
|
||||
Function::Phi => StaticResult::Scalar,
|
||||
Function::PoissonDist => StaticResult::Scalar,
|
||||
Function::Standardize => StaticResult::Scalar,
|
||||
Function::StDevP => StaticResult::Scalar,
|
||||
Function::StDevS => StaticResult::Scalar,
|
||||
Function::Stdeva => StaticResult::Scalar,
|
||||
Function::Stdevpa => StaticResult::Scalar,
|
||||
Function::TDist => StaticResult::Scalar,
|
||||
Function::TDist2T => StaticResult::Scalar,
|
||||
Function::TDistRT => StaticResult::Scalar,
|
||||
Function::TInv => StaticResult::Scalar,
|
||||
Function::TInv2T => StaticResult::Scalar,
|
||||
Function::TTest => StaticResult::Scalar,
|
||||
Function::VarP => StaticResult::Scalar,
|
||||
Function::VarS => StaticResult::Scalar,
|
||||
Function::VarpA => StaticResult::Scalar,
|
||||
Function::VarA => StaticResult::Scalar,
|
||||
Function::WeibullDist => StaticResult::Scalar,
|
||||
Function::ZTest => StaticResult::Scalar,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,8 +8,74 @@ use crate::single_number_fn;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
use statrs::function::gamma::ln_gamma;
|
||||
use std::f64::consts::LN_2;
|
||||
use std::f64::consts::PI;
|
||||
|
||||
const FACT_TABLE: [f64; 26] = [
|
||||
1.0, // 0!
|
||||
1.0, // 1!
|
||||
2.0, // 2!
|
||||
6.0, // 3!
|
||||
24.0, // 4!
|
||||
120.0, // 5!
|
||||
720.0, // 6!
|
||||
5040.0, // 7!
|
||||
40320.0, // 8!
|
||||
362880.0, // 9!
|
||||
3628800.0, // 10!
|
||||
39916800.0, // 11!
|
||||
479001600.0, // 12!
|
||||
6227020800.0, // 13!
|
||||
87178291200.0, // 14!
|
||||
1307674368000.0, // 15!
|
||||
20922789888000.0, // 16!
|
||||
355687428096000.0, // 17!
|
||||
6402373705728000.0, // 18!
|
||||
121645100408832000.0, // 19!
|
||||
2432902008176640000.0, // 20!
|
||||
51090942171709440000.0, // 21!
|
||||
1124000727777607680000.0, // 22!
|
||||
25852016738884976640000.0, // 23!
|
||||
620448401733239439360000.0, // 24!
|
||||
15511210043330985984000000.0, // 25!
|
||||
];
|
||||
|
||||
const FACTDOUBLE_TABLE: [f64; 32] = [
|
||||
1.0,
|
||||
1.0,
|
||||
2.0,
|
||||
3.0,
|
||||
8.0,
|
||||
15.0,
|
||||
48.0,
|
||||
105.0,
|
||||
384.0,
|
||||
945.0,
|
||||
3840.0,
|
||||
10395.0,
|
||||
46080.0,
|
||||
135135.0,
|
||||
645120.0,
|
||||
2027025.0,
|
||||
10321920.0,
|
||||
34459425.0,
|
||||
185794560.0,
|
||||
654729075.0,
|
||||
3715891200.0,
|
||||
13749310575.0,
|
||||
81749606400.0,
|
||||
316234143225.0,
|
||||
1961990553600.0,
|
||||
7905853580625.0,
|
||||
51011754393600.0,
|
||||
213458046676875.0,
|
||||
1428329123020800.0,
|
||||
6190283353629370.0,
|
||||
42849873690624000.0,
|
||||
191898783962511000.0,
|
||||
];
|
||||
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
pub fn random() -> f64 {
|
||||
rand::random()
|
||||
@@ -1022,7 +1088,7 @@ impl Model {
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if arg_count > 3 {
|
||||
if !(1..=3).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let value = match self.get_number(&args[0], cell) {
|
||||
@@ -1063,7 +1129,7 @@ impl Model {
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if arg_count > 2 {
|
||||
if !(1..=2).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let value = match self.get_number(&args[0], cell) {
|
||||
@@ -1093,7 +1159,7 @@ impl Model {
|
||||
|
||||
pub(crate) fn fn_floor_math(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if arg_count > 3 {
|
||||
if !(1..=3).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let value = match self.get_number(&args[0], cell) {
|
||||
@@ -1135,7 +1201,7 @@ impl Model {
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if arg_count > 2 {
|
||||
if !(1..=2).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let value = match self.get_number(&args[0], cell) {
|
||||
@@ -1209,7 +1275,7 @@ impl Model {
|
||||
}
|
||||
|
||||
pub(crate) fn fn_trunc(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() > 2 {
|
||||
if !(1..=2).contains(&args.len()) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let value = match self.get_number(&args[0], cell) {
|
||||
@@ -1319,35 +1385,78 @@ impl Model {
|
||||
single_number_fn!(fn_sec, |f| Ok(1.0 / f64::cos(f)));
|
||||
single_number_fn!(fn_sech, |f| Ok(1.0 / f64::cosh(f)));
|
||||
single_number_fn!(fn_exp, |f: f64| Ok(f64::exp(f)));
|
||||
|
||||
single_number_fn!(fn_fact, |x: f64| {
|
||||
let x = x.floor();
|
||||
|
||||
if x < 0.0 {
|
||||
return Err(Error::NUM);
|
||||
}
|
||||
let mut acc = 1.0;
|
||||
let mut k = 2.0;
|
||||
while k <= x {
|
||||
acc *= k;
|
||||
k += 1.0;
|
||||
}
|
||||
Ok(acc)
|
||||
});
|
||||
single_number_fn!(fn_factdouble, |x: f64| {
|
||||
let x = x.floor();
|
||||
if x < -1.0 {
|
||||
return Err(Error::NUM);
|
||||
}
|
||||
if x < 0.0 {
|
||||
|
||||
if x == 0.0 {
|
||||
return Ok(1.0);
|
||||
}
|
||||
let mut acc = 1.0;
|
||||
let mut k = if x % 2.0 == 0.0 { 2.0 } else { 1.0 };
|
||||
while k <= x {
|
||||
acc *= k;
|
||||
k += 2.0;
|
||||
if x < FACT_TABLE.len() as f64 {
|
||||
return Ok(FACT_TABLE[x as usize]);
|
||||
}
|
||||
Ok(acc)
|
||||
|
||||
// Use ln Γ(x+1) to avoid overflow while deciding.
|
||||
let ln_val = ln_gamma(x + 1.0);
|
||||
|
||||
// If gamma overflows or is invalid, map to NUM
|
||||
if !ln_val.is_finite() || ln_val > f64::MAX.ln() {
|
||||
return Err(Error::NUM);
|
||||
}
|
||||
|
||||
Ok(ln_val.exp())
|
||||
});
|
||||
|
||||
single_number_fn!(fn_factdouble, |x: f64| {
|
||||
let x = x.floor();
|
||||
if x <= -1.0 {
|
||||
return Err(Error::NUM);
|
||||
}
|
||||
|
||||
if x <= 1.0 {
|
||||
return Ok(1.0);
|
||||
}
|
||||
|
||||
// From here x > 1 and integer
|
||||
let n = x as i64;
|
||||
|
||||
if n < FACTDOUBLE_TABLE.len() as i64 {
|
||||
return Ok(FACTDOUBLE_TABLE[n as usize]);
|
||||
}
|
||||
|
||||
// n!! grows very fast, so we compute it using gamma in log-space:
|
||||
//
|
||||
// If n is even, n = 2k:
|
||||
// n!! = 2^k * k!
|
||||
// If n is odd, n = 2k + 1:
|
||||
// n!! = (2k+1)! / (2^k * k!)
|
||||
//
|
||||
// and we use ln_gamma for factorials.
|
||||
|
||||
let ln_val = if n % 2 == 0 {
|
||||
// even n = 2k
|
||||
let k = (n / 2) as f64;
|
||||
// ln(n!!) = k * ln(2) + ln(k!)
|
||||
k * LN_2 + ln_gamma(k + 1.0)
|
||||
} else {
|
||||
// odd n = 2k + 1
|
||||
let k = ((n - 1) / 2) as f64;
|
||||
let nn = n as f64;
|
||||
// ln(n!!) = ln((2k+1)!) - (k * ln(2) + ln(k!))
|
||||
ln_gamma(nn + 1.0) - (k * LN_2 + ln_gamma(k + 1.0))
|
||||
};
|
||||
|
||||
if !ln_val.is_finite() || ln_val > f64::MAX.ln() {
|
||||
return Err(Error::NUM);
|
||||
}
|
||||
|
||||
Ok(ln_val.exp())
|
||||
});
|
||||
|
||||
single_number_fn!(fn_sign, |f| {
|
||||
if f == 0.0 {
|
||||
Ok(0.0)
|
||||
|
||||
@@ -190,6 +190,98 @@ pub enum Function {
|
||||
Minifs,
|
||||
Geomean,
|
||||
|
||||
Avedev,
|
||||
BetaDist,
|
||||
BetaInv,
|
||||
BinomDist,
|
||||
BinomDistRange,
|
||||
BinomInv,
|
||||
ChisqDist,
|
||||
ChisqDistRT,
|
||||
ChisqInv,
|
||||
ChisqInvRT,
|
||||
ChisqTest,
|
||||
ConfidenceNorm,
|
||||
ConfidenceT,
|
||||
// Correl,
|
||||
CovarianceP,
|
||||
CovarianceS,
|
||||
Devsq,
|
||||
ExponDist,
|
||||
FDist,
|
||||
FDistRT,
|
||||
FInv,
|
||||
FInvRT,
|
||||
// FTest,
|
||||
Fisher,
|
||||
FisherInv,
|
||||
// Forecast,
|
||||
Gamma,
|
||||
GammaDist,
|
||||
GammaInv,
|
||||
GammaLn,
|
||||
GammaLnPrecise,
|
||||
// Gauss,
|
||||
// Growth,
|
||||
// Harmean,
|
||||
HypGeomDist,
|
||||
// Intercept,
|
||||
// Kurt,
|
||||
// Large,
|
||||
// Linest,
|
||||
// Logest,
|
||||
LogNormDist,
|
||||
LogNormInv,
|
||||
// MaxA,
|
||||
// Median,
|
||||
// MinA,
|
||||
// ModeMult,
|
||||
// ModeSingl,
|
||||
NegbinomDist,
|
||||
NormDist,
|
||||
NormInv,
|
||||
NormSdist,
|
||||
NormSInv,
|
||||
Pearson,
|
||||
// PercentileExc,
|
||||
// PercentileInc,
|
||||
// PercentrankExc,
|
||||
// PercentrankInc,
|
||||
// Permut,
|
||||
// Permutationa,
|
||||
Phi,
|
||||
PoissonDist,
|
||||
// Prob,
|
||||
// QuartileExc,
|
||||
// QuartileInc,
|
||||
// RankAvg,
|
||||
// RankEq,
|
||||
// Rsq
|
||||
// Skew,
|
||||
// SkewP,
|
||||
// Slope,
|
||||
// Small,
|
||||
Standardize,
|
||||
StDevP,
|
||||
StDevS,
|
||||
Stdeva,
|
||||
Stdevpa,
|
||||
// Steyx,
|
||||
TDist,
|
||||
TDist2T,
|
||||
TDistRT,
|
||||
TInv,
|
||||
TInv2T,
|
||||
TTest,
|
||||
// Trend,
|
||||
// Trimmean,
|
||||
VarP,
|
||||
VarS,
|
||||
VarpA,
|
||||
VarA,
|
||||
WeibullDist,
|
||||
ZTest,
|
||||
|
||||
// Date and time
|
||||
Date,
|
||||
Datedif,
|
||||
@@ -328,7 +420,7 @@ pub enum Function {
|
||||
}
|
||||
|
||||
impl Function {
|
||||
pub fn into_iter() -> IntoIter<Function, 268> {
|
||||
pub fn into_iter() -> IntoIter<Function, 324> {
|
||||
[
|
||||
Function::And,
|
||||
Function::False,
|
||||
@@ -453,6 +545,7 @@ impl Function {
|
||||
Function::Type,
|
||||
Function::Sheet,
|
||||
Function::Average,
|
||||
Function::Avedev,
|
||||
Function::Averagea,
|
||||
Function::Averageif,
|
||||
Function::Averageifs,
|
||||
@@ -598,6 +691,61 @@ impl Function {
|
||||
Function::Dvar,
|
||||
Function::Dvarp,
|
||||
Function::Dstdevp,
|
||||
Function::BetaDist,
|
||||
Function::BetaInv,
|
||||
Function::BinomDist,
|
||||
Function::BinomDistRange,
|
||||
Function::BinomInv,
|
||||
Function::ChisqDist,
|
||||
Function::ChisqDistRT,
|
||||
Function::ChisqInv,
|
||||
Function::ChisqInvRT,
|
||||
Function::ChisqTest,
|
||||
Function::ConfidenceNorm,
|
||||
Function::ConfidenceT,
|
||||
Function::CovarianceP,
|
||||
Function::CovarianceS,
|
||||
Function::Devsq,
|
||||
Function::ExponDist,
|
||||
Function::FDist,
|
||||
Function::FDistRT,
|
||||
Function::FInv,
|
||||
Function::FInvRT,
|
||||
Function::Fisher,
|
||||
Function::FisherInv,
|
||||
Function::Gamma,
|
||||
Function::GammaDist,
|
||||
Function::GammaInv,
|
||||
Function::GammaLn,
|
||||
Function::GammaLnPrecise,
|
||||
Function::HypGeomDist,
|
||||
Function::LogNormDist,
|
||||
Function::LogNormInv,
|
||||
Function::NegbinomDist,
|
||||
Function::NormDist,
|
||||
Function::NormInv,
|
||||
Function::NormSdist,
|
||||
Function::NormSInv,
|
||||
Function::Pearson,
|
||||
Function::Phi,
|
||||
Function::PoissonDist,
|
||||
Function::Standardize,
|
||||
Function::StDevP,
|
||||
Function::StDevS,
|
||||
Function::Stdeva,
|
||||
Function::Stdevpa,
|
||||
Function::TDist,
|
||||
Function::TDist2T,
|
||||
Function::TDistRT,
|
||||
Function::TInv,
|
||||
Function::TInv2T,
|
||||
Function::TTest,
|
||||
Function::VarP,
|
||||
Function::VarS,
|
||||
Function::VarpA,
|
||||
Function::VarA,
|
||||
Function::WeibullDist,
|
||||
Function::ZTest,
|
||||
]
|
||||
.into_iter()
|
||||
}
|
||||
@@ -659,6 +807,66 @@ impl Function {
|
||||
Function::Sec => "_xlfn.SEC".to_string(),
|
||||
Function::Sech => "_xlfn.SECH".to_string(),
|
||||
Function::Acot => "_xlfn.ACOT".to_string(),
|
||||
Function::GammaLnPrecise => "_xlfn.GAMMALN.PRECISE".to_string(),
|
||||
Function::Gamma => "_xlfn.GAMMA".to_string(),
|
||||
Function::GammaInv => "_xlfn.GAMMA.INV".to_string(),
|
||||
Function::GammaLn => "_xlfn.GAMMALN".to_string(),
|
||||
Function::BetaDist => "_xlfn.BETA.DIST".to_string(),
|
||||
Function::BetaInv => "_xlfn.BETA.INV".to_string(),
|
||||
|
||||
Function::BinomDist => "_xlfn.BINOM.DIST".to_string(),
|
||||
Function::BinomDistRange => "_xlfn.BINOM.DIST.RANGE".to_string(),
|
||||
Function::BinomInv => "_xlfn.BINOM.INV".to_string(),
|
||||
Function::NegbinomDist => "_xlfn.NEGBINOM.DIST".to_string(),
|
||||
|
||||
Function::ChisqDist => "_xlfn.CHISQ.DIST".to_string(),
|
||||
Function::ChisqDistRT => "_xlfn.CHISQ.DIST.RT".to_string(),
|
||||
Function::ChisqInv => "_xlfn.CHISQ.INV".to_string(),
|
||||
Function::ChisqInvRT => "_xlfn.CHISQ.INV.RT".to_string(),
|
||||
Function::ChisqTest => "_xlfn.CHISQ.TEST".to_string(),
|
||||
|
||||
Function::ConfidenceNorm => "_xlfn.CONFIDENCE.NORM".to_string(),
|
||||
Function::ConfidenceT => "_xlfn.CONFIDENCE.T".to_string(),
|
||||
|
||||
Function::CovarianceP => "_xlfn.COVARIANCE.P".to_string(),
|
||||
Function::CovarianceS => "_xlfn.COVARIANCE.S".to_string(),
|
||||
|
||||
Function::ExponDist => "_xlfn.EXPON.DIST".to_string(),
|
||||
|
||||
Function::FDist => "_xlfn.F.DIST".to_string(),
|
||||
Function::FDistRT => "_xlfn.F.DIST.RT".to_string(),
|
||||
Function::FInv => "_xlfn.F.INV".to_string(),
|
||||
Function::FInvRT => "_xlfn.F.INV.RT".to_string(),
|
||||
|
||||
Function::HypGeomDist => "_xlfn.HYPGEOM.DIST".to_string(),
|
||||
|
||||
Function::LogNormDist => "_xlfn.LOGNORM.DIST".to_string(),
|
||||
Function::LogNormInv => "_xlfn.LOGNORM.INV".to_string(),
|
||||
|
||||
Function::NormDist => "_xlfn.NORM.DIST".to_string(),
|
||||
Function::NormInv => "_xlfn.NORM.INV".to_string(),
|
||||
Function::NormSdist => "_xlfn.NORM.S.DIST".to_string(),
|
||||
Function::NormSInv => "_xlfn.NORM.S.INV".to_string(),
|
||||
|
||||
Function::Phi => "_xlfn.PHI".to_string(),
|
||||
|
||||
Function::PoissonDist => "_xlfn.POISSON.DIST".to_string(),
|
||||
|
||||
Function::StDevP => "_xlfn.STDEV.P".to_string(),
|
||||
Function::StDevS => "_xlfn.STDEV.S".to_string(),
|
||||
|
||||
Function::TDist => "_xlfn.T.DIST".to_string(),
|
||||
Function::TDist2T => "_xlfn.T.DIST.2T".to_string(),
|
||||
Function::TDistRT => "_xlfn.T.DIST.RT".to_string(),
|
||||
Function::TInv => "_xlfn.T.INV".to_string(),
|
||||
Function::TInv2T => "_xlfn.T.INV.2T".to_string(),
|
||||
Function::TTest => "_xlfn.T.TEST".to_string(),
|
||||
|
||||
Function::VarP => "_xlfn.VAR.P".to_string(),
|
||||
Function::VarS => "_xlfn.VAR.S".to_string(),
|
||||
|
||||
Function::WeibullDist => "_xlfn.WEIBULL.DIST".to_string(),
|
||||
Function::ZTest => "_xlfn.Z.TEST".to_string(),
|
||||
|
||||
_ => self.to_string(),
|
||||
}
|
||||
@@ -811,6 +1019,7 @@ impl Function {
|
||||
|
||||
"AVERAGE" => Some(Function::Average),
|
||||
"AVERAGEA" => Some(Function::Averagea),
|
||||
"AVEDEV" => Some(Function::Avedev),
|
||||
"AVERAGEIF" => Some(Function::Averageif),
|
||||
"AVERAGEIFS" => Some(Function::Averageifs),
|
||||
"COUNT" => Some(Function::Count),
|
||||
@@ -957,6 +1166,62 @@ impl Function {
|
||||
"DVARP" => Some(Function::Dvarp),
|
||||
"DSTDEVP" => Some(Function::Dstdevp),
|
||||
|
||||
"BETA.DIST" | "_XLFN.BETA.DIST" => Some(Function::BetaDist),
|
||||
"BETA.INV" | "_XLFN.BETA.INV" => Some(Function::BetaInv),
|
||||
"BINOM.DIST" | "_XLFN.BINOM.DIST" => Some(Function::BinomDist),
|
||||
"BINOM.DIST.RANGE" | "_XLFN.BINOM.DIST.RANGE" => Some(Function::BinomDistRange),
|
||||
"BINOM.INV" | "_XLFN.BINOM.INV" => Some(Function::BinomInv),
|
||||
"CHISQ.DIST" | "_XLFN.CHISQ.DIST" => Some(Function::ChisqDist),
|
||||
"CHISQ.DIST.RT" | "_XLFN.CHISQ.DIST.RT" => Some(Function::ChisqDistRT),
|
||||
"CHISQ.INV" | "_XLFN.CHISQ.INV" => Some(Function::ChisqInv),
|
||||
"CHISQ.INV.RT" | "_XLFN.CHISQ.INV.RT" => Some(Function::ChisqInvRT),
|
||||
"CHISQ.TEST" | "_XLFN.CHISQ.TEST" => Some(Function::ChisqTest),
|
||||
"CONFIDENCE.NORM" | "_XLFN.CONFIDENCE.NORM" => Some(Function::ConfidenceNorm),
|
||||
"CONFIDENCE.T" | "_XLFN.CONFIDENCE.T" => Some(Function::ConfidenceT),
|
||||
"COVARIANCE.P" | "_XLFN.COVARIANCE.P" => Some(Function::CovarianceP),
|
||||
"COVARIANCE.S" | "_XLFN.COVARIANCE.S" => Some(Function::CovarianceS),
|
||||
"DEVSQ" => Some(Function::Devsq),
|
||||
"EXPON.DIST" | "_XLFN.EXPON.DIST" => Some(Function::ExponDist),
|
||||
"F.DIST" | "_XLFN.F.DIST" => Some(Function::FDist),
|
||||
"F.DIST.RT" | "_XLFN.F.DIST.RT" => Some(Function::FDistRT),
|
||||
"F.INV" | "_XLFN.F.INV" => Some(Function::FInv),
|
||||
"F.INV.RT" | "_XLFN.F.INV.RT" => Some(Function::FInvRT),
|
||||
"FISHER" => Some(Function::Fisher),
|
||||
"FISHERINV" => Some(Function::FisherInv),
|
||||
"GAMMA" | "_XLFN.GAMMA" => Some(Function::Gamma),
|
||||
"GAMMA.DIST" | "_XLFN.GAMMA.DIST" => Some(Function::GammaDist),
|
||||
"GAMMA.INV" | "_XLFN.GAMMA.INV" => Some(Function::GammaInv),
|
||||
"GAMMALN" | "_XLFN.GAMMALN" => Some(Function::GammaLn),
|
||||
"GAMMALN.PRECISE" | "_XLFN.GAMMALN.PRECISE" => Some(Function::GammaLnPrecise),
|
||||
"HYPGEOM.DIST" | "_XLFN.HYPGEOM.DIST" => Some(Function::HypGeomDist),
|
||||
"LOGNORM.DIST" | "_XLFN.LOGNORM.DIST" => Some(Function::LogNormDist),
|
||||
"LOGNORM.INV" | "_XLFN.LOGNORM.INV" => Some(Function::LogNormInv),
|
||||
"NEGBINOM.DIST" | "_XLFN.NEGBINOM.DIST" => Some(Function::NegbinomDist),
|
||||
"NORM.DIST" | "_XLFN.NORM.DIST" => Some(Function::NormDist),
|
||||
"NORM.INV" | "_XLFN.NORM.INV" => Some(Function::NormInv),
|
||||
"NORM.S.DIST" | "_XLFN.NORM.S.DIST" => Some(Function::NormSdist),
|
||||
"NORM.S.INV" | "_XLFN.NORM.S.INV" => Some(Function::NormSInv),
|
||||
"PEARSON" => Some(Function::Pearson),
|
||||
"PHI" | "_XLFN.PHI" => Some(Function::Phi),
|
||||
"POISSON.DIST" | "_XLFN.POISSON.DIST" => Some(Function::PoissonDist),
|
||||
"STANDARDIZE" => Some(Function::Standardize),
|
||||
"STDEV.P" | "_XLFN.STDEV.P" => Some(Function::StDevP),
|
||||
"STDEV.S" | "_XLFN.STDEV.S" => Some(Function::StDevS),
|
||||
"STDEVA" => Some(Function::Stdeva),
|
||||
"STDEVPA" => Some(Function::Stdevpa),
|
||||
"T.DIST" | "_XLFN.T.DIST" => Some(Function::TDist),
|
||||
"T.DIST.2T" | "_XLFN.T.DIST.2T" => Some(Function::TDist2T),
|
||||
"T.DIST.RT" | "_XLFN.T.DIST.RT" => Some(Function::TDistRT),
|
||||
"T.INV" | "_XLFN.T.INV" => Some(Function::TInv),
|
||||
"T.INV.2T" | "_XLFN.T.INV.2T" => Some(Function::TInv2T),
|
||||
"T.TEST" | "_XLFN.T.TEST" => Some(Function::TTest),
|
||||
"VAR.P" | "_XLFN.VAR.P" => Some(Function::VarP),
|
||||
"VAR.S" | "_XLFN.VAR.S" => Some(Function::VarS),
|
||||
"VARPA" => Some(Function::VarpA),
|
||||
"VARA" => Some(Function::VarA),
|
||||
"WEIBULL.DIST" | "_XLFN.WEIBULL.DIST" => Some(Function::WeibullDist),
|
||||
"Z.TEST" | "_XLFN.Z.TEST" => Some(Function::ZTest),
|
||||
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
@@ -1065,6 +1330,7 @@ impl fmt::Display for Function {
|
||||
Function::Sheet => write!(f, "SHEET"),
|
||||
Function::Average => write!(f, "AVERAGE"),
|
||||
Function::Averagea => write!(f, "AVERAGEA"),
|
||||
Function::Avedev => write!(f, "AVEDEV"),
|
||||
Function::Averageif => write!(f, "AVERAGEIF"),
|
||||
Function::Averageifs => write!(f, "AVERAGEIFS"),
|
||||
Function::Count => write!(f, "COUNT"),
|
||||
@@ -1234,6 +1500,62 @@ impl fmt::Display for Function {
|
||||
Function::Dvar => write!(f, "DVAR"),
|
||||
Function::Dvarp => write!(f, "DVARP"),
|
||||
Function::Dstdevp => write!(f, "DSTDEVP"),
|
||||
|
||||
Function::BetaDist => write!(f, "BETA.DIST"),
|
||||
Function::BetaInv => write!(f, "BETA.INV"),
|
||||
Function::BinomDist => write!(f, "BINOM.DIST"),
|
||||
Function::BinomDistRange => write!(f, "BINOM.DIST.RANGE"),
|
||||
Function::BinomInv => write!(f, "BINOM.INV"),
|
||||
Function::ChisqDist => write!(f, "CHISQ.DIST"),
|
||||
Function::ChisqDistRT => write!(f, "CHISQ.DIST.RT"),
|
||||
Function::ChisqInv => write!(f, "CHISQ.INV"),
|
||||
Function::ChisqInvRT => write!(f, "CHISQ.INV.RT"),
|
||||
Function::ChisqTest => write!(f, "CHISQ.TEST"),
|
||||
Function::ConfidenceNorm => write!(f, "CONFIDENCE.NORM"),
|
||||
Function::ConfidenceT => write!(f, "CONFIDENCE.T"),
|
||||
Function::CovarianceP => write!(f, "COVARIANCE.P"),
|
||||
Function::CovarianceS => write!(f, "COVARIANCE.S"),
|
||||
Function::Devsq => write!(f, "DEVSQ"),
|
||||
Function::ExponDist => write!(f, "EXPON.DIST"),
|
||||
Function::FDist => write!(f, "F.DIST"),
|
||||
Function::FDistRT => write!(f, "F.DIST.RT"),
|
||||
Function::FInv => write!(f, "F.INV"),
|
||||
Function::FInvRT => write!(f, "F.INV.RT"),
|
||||
Function::Fisher => write!(f, "FISHER"),
|
||||
Function::FisherInv => write!(f, "FISHERINV"),
|
||||
Function::Gamma => write!(f, "GAMMA"),
|
||||
Function::GammaDist => write!(f, "GAMMA.DIST"),
|
||||
Function::GammaInv => write!(f, "GAMMA.INV"),
|
||||
Function::GammaLn => write!(f, "GAMMALN"),
|
||||
Function::GammaLnPrecise => write!(f, "GAMMALN.PRECISE"),
|
||||
Function::HypGeomDist => write!(f, "HYPGEOM.DIST"),
|
||||
Function::LogNormDist => write!(f, "LOGNORM.DIST"),
|
||||
Function::LogNormInv => write!(f, "LOGNORM.INV"),
|
||||
Function::NegbinomDist => write!(f, "NEGBINOM.DIST"),
|
||||
Function::NormDist => write!(f, "NORM.DIST"),
|
||||
Function::NormInv => write!(f, "NORM.INV"),
|
||||
Function::NormSdist => write!(f, "NORM.S.DIST"),
|
||||
Function::NormSInv => write!(f, "NORM.S.INV"),
|
||||
Function::Pearson => write!(f, "PEARSON"),
|
||||
Function::Phi => write!(f, "PHI"),
|
||||
Function::PoissonDist => write!(f, "POISSON.DIST"),
|
||||
Function::Standardize => write!(f, "STANDARDIZE"),
|
||||
Function::StDevP => write!(f, "STDEV.P"),
|
||||
Function::StDevS => write!(f, "STDEV.S"),
|
||||
Function::Stdeva => write!(f, "STDEVA"),
|
||||
Function::Stdevpa => write!(f, "STDEVPA"),
|
||||
Function::TDist => write!(f, "T.DIST"),
|
||||
Function::TDist2T => write!(f, "T.DIST.2T"),
|
||||
Function::TDistRT => write!(f, "T.DIST.RT"),
|
||||
Function::TInv => write!(f, "T.INV"),
|
||||
Function::TInv2T => write!(f, "T.INV.2T"),
|
||||
Function::TTest => write!(f, "T.TEST"),
|
||||
Function::VarP => write!(f, "VAR.P"),
|
||||
Function::VarS => write!(f, "VAR.S"),
|
||||
Function::VarpA => write!(f, "VARPA"),
|
||||
Function::VarA => write!(f, "VARA"),
|
||||
Function::WeibullDist => write!(f, "WEIBULL.DIST"),
|
||||
Function::ZTest => write!(f, "Z.TEST"),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1354,6 +1676,7 @@ impl Model {
|
||||
Function::Sheet => self.fn_sheet(args, cell),
|
||||
Function::Average => self.fn_average(args, cell),
|
||||
Function::Averagea => self.fn_averagea(args, cell),
|
||||
Function::Avedev => self.fn_avedev(args, cell),
|
||||
Function::Averageif => self.fn_averageif(args, cell),
|
||||
Function::Averageifs => self.fn_averageifs(args, cell),
|
||||
Function::Count => self.fn_count(args, cell),
|
||||
@@ -1530,6 +1853,61 @@ impl Model {
|
||||
Function::Dvar => self.fn_dvar(args, cell),
|
||||
Function::Dvarp => self.fn_dvarp(args, cell),
|
||||
Function::Dstdevp => self.fn_dstdevp(args, cell),
|
||||
Function::BetaDist => self.fn_beta_dist(args, cell),
|
||||
Function::BetaInv => self.fn_beta_inv(args, cell),
|
||||
Function::BinomDist => self.fn_binom_dist(args, cell),
|
||||
Function::BinomDistRange => self.fn_binom_dist_range(args, cell),
|
||||
Function::BinomInv => self.fn_binom_inv(args, cell),
|
||||
Function::ChisqDist => self.fn_chisq_dist(args, cell),
|
||||
Function::ChisqDistRT => self.fn_chisq_dist_rt(args, cell),
|
||||
Function::ChisqInv => self.fn_chisq_inv(args, cell),
|
||||
Function::ChisqInvRT => self.fn_chisq_inv_rt(args, cell),
|
||||
Function::ChisqTest => self.fn_chisq_test(args, cell),
|
||||
Function::ConfidenceNorm => self.fn_confidence_norm(args, cell),
|
||||
Function::ConfidenceT => self.fn_confidence_t(args, cell),
|
||||
Function::CovarianceP => self.fn_covariance_p(args, cell),
|
||||
Function::CovarianceS => self.fn_covariance_s(args, cell),
|
||||
Function::Devsq => self.fn_devsq(args, cell),
|
||||
Function::ExponDist => self.fn_expon_dist(args, cell),
|
||||
Function::FDist => self.fn_f_dist(args, cell),
|
||||
Function::FDistRT => self.fn_f_dist_rt(args, cell),
|
||||
Function::FInv => self.fn_f_inv(args, cell),
|
||||
Function::FInvRT => self.fn_f_inv_rt(args, cell),
|
||||
Function::Fisher => self.fn_fisher(args, cell),
|
||||
Function::FisherInv => self.fn_fisher_inv(args, cell),
|
||||
Function::Gamma => self.fn_gamma(args, cell),
|
||||
Function::GammaDist => self.fn_gamma_dist(args, cell),
|
||||
Function::GammaInv => self.fn_gamma_inv(args, cell),
|
||||
Function::GammaLn => self.fn_gamma_ln(args, cell),
|
||||
Function::GammaLnPrecise => self.fn_gamma_ln_precise(args, cell),
|
||||
Function::HypGeomDist => self.fn_hyp_geom_dist(args, cell),
|
||||
Function::LogNormDist => self.fn_log_norm_dist(args, cell),
|
||||
Function::LogNormInv => self.fn_log_norm_inv(args, cell),
|
||||
Function::NegbinomDist => self.fn_negbinom_dist(args, cell),
|
||||
Function::NormDist => self.fn_norm_dist(args, cell),
|
||||
Function::NormInv => self.fn_norm_inv(args, cell),
|
||||
Function::NormSdist => self.fn_norm_s_dist(args, cell),
|
||||
Function::NormSInv => self.fn_norm_s_inv(args, cell),
|
||||
Function::Pearson => self.fn_pearson(args, cell),
|
||||
Function::Phi => self.fn_phi(args, cell),
|
||||
Function::PoissonDist => self.fn_poisson_dist(args, cell),
|
||||
Function::Standardize => self.fn_standardize(args, cell),
|
||||
Function::StDevP => self.fn_stdev_p(args, cell),
|
||||
Function::StDevS => self.fn_stdev_s(args, cell),
|
||||
Function::Stdeva => self.fn_stdeva(args, cell),
|
||||
Function::Stdevpa => self.fn_stdevpa(args, cell),
|
||||
Function::TDist => self.fn_t_dist(args, cell),
|
||||
Function::TDist2T => self.fn_t_dist_2t(args, cell),
|
||||
Function::TDistRT => self.fn_t_dist_rt(args, cell),
|
||||
Function::TInv => self.fn_t_inv(args, cell),
|
||||
Function::TInv2T => self.fn_t_inv_2t(args, cell),
|
||||
Function::TTest => self.fn_t_test(args, cell),
|
||||
Function::VarP => self.fn_var_p(args, cell),
|
||||
Function::VarS => self.fn_var_s(args, cell),
|
||||
Function::VarpA => self.fn_varpa(args, cell),
|
||||
Function::VarA => self.fn_vara(args, cell),
|
||||
Function::WeibullDist => self.fn_weibull_dist(args, cell),
|
||||
Function::ZTest => self.fn_z_test(args, cell),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
213
base/src/functions/statistical/beta.rs
Normal file
213
base/src/functions/statistical/beta.rs
Normal file
@@ -0,0 +1,213 @@
|
||||
use statrs::distribution::{Beta, Continuous, ContinuousCDF};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// BETA.DIST(x, alpha, beta, cumulative, [A], [B])
|
||||
pub(crate) fn fn_beta_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if !(4..=6).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let alpha = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let beta_param = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// cumulative argument: interpret like Excel
|
||||
let cumulative = match self.evaluate_node_in_context(&args[3], cell) {
|
||||
CalcResult::Boolean(b) => b,
|
||||
CalcResult::Number(n) => n != 0.0,
|
||||
CalcResult::String(s) => {
|
||||
let up = s.to_ascii_uppercase();
|
||||
if up == "TRUE" {
|
||||
true
|
||||
} else if up == "FALSE" {
|
||||
false
|
||||
} else {
|
||||
return CalcResult::Error {
|
||||
error: Error::VALUE,
|
||||
origin: cell,
|
||||
message: "cumulative must be TRUE/FALSE or numeric".to_string(),
|
||||
};
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
return CalcResult::Error {
|
||||
error: Error::VALUE,
|
||||
origin: cell,
|
||||
message: "Invalid cumulative argument".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Optional A, B
|
||||
let a = if arg_count >= 5 {
|
||||
match self.get_number_no_bools(&args[4], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
}
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
let b = if arg_count >= 6 {
|
||||
match self.get_number_no_bools(&args[5], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
}
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
|
||||
// Excel: alpha <= 0 or beta <= 0 → #NUM!
|
||||
if alpha <= 0.0 || beta_param <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"alpha and beta must be > 0 in BETA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Excel: if x < A, x > B, or A = B → #NUM!
|
||||
if b == a || x < a || x > b {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"x must be between A and B and A < B in BETA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Transform to standard Beta(0,1)
|
||||
let width = b - a;
|
||||
let t = (x - a) / width;
|
||||
|
||||
let dist = match Beta::new(alpha, beta_param) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Beta distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative {
|
||||
dist.cdf(t)
|
||||
} else {
|
||||
// general-interval beta pdf: f_X(x) = f_T(t) / (B - A), t=(x-A)/(B-A)
|
||||
dist.pdf(t) / width
|
||||
};
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for BETA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_beta_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let arg_count = args.len();
|
||||
if !(3..=5).contains(&arg_count) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let alpha = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let beta_param = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let a = if arg_count >= 4 {
|
||||
match self.get_number_no_bools(&args[3], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
}
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
|
||||
let b = if arg_count >= 5 {
|
||||
match self.get_number_no_bools(&args[4], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
}
|
||||
} else {
|
||||
1.0
|
||||
};
|
||||
|
||||
if alpha <= 0.0 || beta_param <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"alpha and beta must be > 0 in BETA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// probability <= 0 or probability > 1 → #NUM!
|
||||
if p <= 0.0 || p > 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in (0,1] in BETA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if b <= a {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"A must be < B in BETA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match Beta::new(alpha, beta_param) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Beta distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let t = dist.inverse_cdf(p);
|
||||
if t.is_nan() || t.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for BETA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Map back from [0,1] to [A,B]
|
||||
let x = a + t * (b - a);
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
}
|
||||
311
base/src/functions/statistical/binom.rs
Normal file
311
base/src/functions/statistical/binom.rs
Normal file
@@ -0,0 +1,311 @@
|
||||
use statrs::distribution::{Binomial, Discrete, DiscreteCDF};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_binom_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
// number_s
|
||||
let number_s = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// trials
|
||||
let trials = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// probability_s
|
||||
let p = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// cumulative (logical)
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Domain checks
|
||||
if trials < 0.0
|
||||
|| number_s < 0.0
|
||||
|| number_s > trials
|
||||
|| p.is_nan()
|
||||
|| !(0.0..=1.0).contains(&p)
|
||||
{
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for BINOM.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Limit to u64
|
||||
if trials > u64::MAX as f64 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Number of trials too large".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = trials as u64;
|
||||
let k = number_s as u64;
|
||||
|
||||
let dist = match Binomial::new(p, n) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for binomial distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
|
||||
|
||||
if prob.is_nan() || prob.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for BINOM.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(prob)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_binom_dist_range(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() < 3 || args.len() > 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
// trials
|
||||
let trials = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// probability_s
|
||||
let p = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// number_s (lower)
|
||||
let number_s = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// number_s2 (upper, optional)
|
||||
let number_s2 = if args.len() == 4 {
|
||||
match self.get_number_no_bools(&args[3], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
}
|
||||
} else {
|
||||
number_s
|
||||
};
|
||||
|
||||
if trials < 0.0
|
||||
|| number_s < 0.0
|
||||
|| number_s2 < 0.0
|
||||
|| number_s > number_s2
|
||||
|| number_s2 > trials
|
||||
|| p.is_nan()
|
||||
|| !(0.0..=1.0).contains(&p)
|
||||
{
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for BINOM.DIST.RANGE".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if trials > u64::MAX as f64 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Number of trials too large".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = trials as u64;
|
||||
let lower = number_s as u64;
|
||||
let upper = number_s2 as u64;
|
||||
|
||||
let dist = match Binomial::new(p, n) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for binomial distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let prob = if lower == 0 {
|
||||
dist.cdf(upper)
|
||||
} else {
|
||||
let cdf_upper = dist.cdf(upper);
|
||||
let cdf_below_lower = dist.cdf(lower - 1);
|
||||
cdf_upper - cdf_below_lower
|
||||
};
|
||||
|
||||
if prob.is_nan() || prob.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for BINOM.DIST.RANGE".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(prob)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_binom_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
// trials
|
||||
let trials = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// probability_s
|
||||
let p = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// alpha
|
||||
let alpha = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if trials < 0.0
|
||||
|| trials > u64::MAX as f64
|
||||
|| p.is_nan()
|
||||
|| !(0.0..=1.0).contains(&p)
|
||||
|| alpha.is_nan()
|
||||
|| !(0.0..=1.0).contains(&alpha)
|
||||
{
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for BINOM.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = trials as u64;
|
||||
|
||||
let dist = match Binomial::new(p, n) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for binomial distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// DiscreteCDF::inverse_cdf returns u64 for binomial
|
||||
let k = statrs::distribution::DiscreteCDF::inverse_cdf(&dist, alpha);
|
||||
|
||||
CalcResult::Number(k as f64)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_negbinom_dist(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
use statrs::distribution::{Discrete, DiscreteCDF, NegativeBinomial};
|
||||
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let number_f = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let number_s = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let probability_s = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if number_f < 0.0 || number_s < 1.0 || !(0.0..=1.0).contains(&probability_s) {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
// Guard against absurdly large failures that won't fit in u64
|
||||
if number_f > (u64::MAX as f64) {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match NegativeBinomial::new(number_s, probability_s) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let f_u = number_f as u64;
|
||||
let result = if cumulative {
|
||||
dist.cdf(f_u)
|
||||
} else {
|
||||
dist.pmf(f_u)
|
||||
};
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for NEGBINOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
565
base/src/functions/statistical/chisq.rs
Normal file
565
base/src/functions/statistical/chisq.rs
Normal file
@@ -0,0 +1,565 @@
|
||||
use statrs::distribution::{ChiSquared, Continuous, ContinuousCDF};
|
||||
|
||||
use crate::expressions::parser::ArrayNode;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
// Helper to check if two shapes are the same or compatible 1D shapes
|
||||
pub(crate) fn is_same_shape_or_1d(rows1: i32, cols1: i32, rows2: i32, cols2: i32) -> bool {
|
||||
(rows1 == rows2 && cols1 == cols2)
|
||||
|| (rows1 == 1 && cols2 == 1 && cols1 == rows2)
|
||||
|| (rows2 == 1 && cols1 == 1 && cols2 == rows1)
|
||||
}
|
||||
|
||||
impl Model {
|
||||
// CHISQ.DIST(x, deg_freedom, cumulative)
|
||||
pub(crate) fn fn_chisq_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[2], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"x must be >= 0 in CHISQ.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
if df < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in CHISQ.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match ChiSquared::new(df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Chi-squared distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for CHISQ.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// CHISQ.DIST.RT(x, deg_freedom)
|
||||
pub(crate) fn fn_chisq_dist_rt(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df_raw = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = df_raw.trunc();
|
||||
|
||||
if x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"x must be >= 0 in CHISQ.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
if df < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in CHISQ.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match ChiSquared::new(df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Chi-squared distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// Right-tail probability: P(X > x).
|
||||
// Use sf(x) directly for better numerical properties than 1 - cdf(x).
|
||||
let result = dist.sf(x);
|
||||
|
||||
if result.is_nan() || result.is_infinite() || result < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for CHISQ.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// CHISQ.INV(probability, deg_freedom)
|
||||
pub(crate) fn fn_chisq_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// if probability < 0 or > 1 → #NUM!
|
||||
if !(0.0..=1.0).contains(&p) {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in [0,1] in CHISQ.INV".to_string(),
|
||||
);
|
||||
}
|
||||
if df < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in CHISQ.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match ChiSquared::new(df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Chi-squared distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let x = dist.inverse_cdf(p);
|
||||
|
||||
if x.is_nan() || x.is_infinite() || x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for CHISQ.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
// CHISQ.INV.RT(probability, deg_freedom)
|
||||
pub(crate) fn fn_chisq_inv_rt(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df_raw = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = df_raw.trunc();
|
||||
|
||||
// if probability < 0 or > 1 → #NUM!
|
||||
if !(0.0..=1.0).contains(&p) {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in [0,1] in CHISQ.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
if df < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in CHISQ.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match ChiSquared::new(df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Chi-squared distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// Right-tail inverse: p = P(X > x) = SF(x) = 1 - CDF(x)
|
||||
// So x = inverse_cdf(1 - p).
|
||||
let x = dist.inverse_cdf(1.0 - p);
|
||||
|
||||
if x.is_nan() || x.is_infinite() || x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for CHISQ.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
pub(crate) fn values_from_range(
|
||||
&mut self,
|
||||
left: CellReferenceIndex,
|
||||
right: CellReferenceIndex,
|
||||
) -> Result<Vec<Option<f64>>, CalcResult> {
|
||||
let mut values = Vec::new();
|
||||
for row_offset in 0..=(right.row - left.row) {
|
||||
for col_offset in 0..=(right.column - left.column) {
|
||||
let cell_ref = CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row: left.row + row_offset,
|
||||
column: left.column + col_offset,
|
||||
};
|
||||
let cell_value = self.evaluate_cell(cell_ref);
|
||||
match cell_value {
|
||||
CalcResult::Number(v) => {
|
||||
values.push(Some(v));
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return Err(error),
|
||||
_ => {
|
||||
values.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(values)
|
||||
}
|
||||
|
||||
pub(crate) fn values_from_array(
|
||||
&mut self,
|
||||
array: Vec<Vec<ArrayNode>>,
|
||||
) -> Result<Vec<Option<f64>>, Error> {
|
||||
let mut values = Vec::new();
|
||||
for row in array {
|
||||
for item in row {
|
||||
match item {
|
||||
ArrayNode::Number(f) => {
|
||||
values.push(Some(f));
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return Err(error);
|
||||
}
|
||||
_ => {
|
||||
values.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(values)
|
||||
}
|
||||
|
||||
// CHISQ.TEST(actual_range, expected_range)
|
||||
pub(crate) fn fn_chisq_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let actual_range = self.evaluate_node_in_context(&args[0], cell);
|
||||
let expected_range = self.evaluate_node_in_context(&args[1], cell);
|
||||
|
||||
let (width, height, values_left, values_right) = match (actual_range, expected_range) {
|
||||
(
|
||||
CalcResult::Range {
|
||||
left: l1,
|
||||
right: r1,
|
||||
},
|
||||
CalcResult::Range {
|
||||
left: l2,
|
||||
right: r2,
|
||||
},
|
||||
) => {
|
||||
if l1.sheet != l2.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
let rows1 = r1.row - l1.row + 1;
|
||||
let cols1 = r1.column - l1.column + 1;
|
||||
let rows2 = r2.row - l2.row + 1;
|
||||
let cols2 = r2.column - l2.column + 1;
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
let values_left = match self.values_from_range(l1, r1) {
|
||||
Err(error) => {
|
||||
return error;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_range(l2, r2) {
|
||||
Err(error) => {
|
||||
return error;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
(rows1, cols1, values_left, values_right)
|
||||
}
|
||||
(
|
||||
CalcResult::Array(left),
|
||||
CalcResult::Range {
|
||||
left: l2,
|
||||
right: r2,
|
||||
},
|
||||
) => {
|
||||
let rows2 = r2.row - l2.row + 1;
|
||||
let cols2 = r2.column - l2.column + 1;
|
||||
|
||||
let rows1 = left.len() as i32;
|
||||
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Array and range must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
let values_left = match self.values_from_array(left) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_range(l2, r2) {
|
||||
Err(error) => {
|
||||
return error;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
(rows2, cols2, values_left, values_right)
|
||||
}
|
||||
(
|
||||
CalcResult::Range {
|
||||
left: l1,
|
||||
right: r1,
|
||||
},
|
||||
CalcResult::Array(right),
|
||||
) => {
|
||||
let rows1 = r1.row - l1.row + 1;
|
||||
let cols1 = r1.column - l1.column + 1;
|
||||
|
||||
let rows2 = right.len() as i32;
|
||||
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Range and array must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
let values_left = match self.values_from_range(l1, r1) {
|
||||
Err(error) => {
|
||||
return error;
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_array(right) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
(rows1, cols1, values_left, values_right)
|
||||
}
|
||||
(CalcResult::Array(left), CalcResult::Array(right)) => {
|
||||
let rows1 = left.len() as i32;
|
||||
let rows2 = right.len() as i32;
|
||||
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
|
||||
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
|
||||
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Arrays must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
let values_left = match self.values_from_array(left) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_array(right) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
(rows1, cols1, values_left, values_right)
|
||||
}
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Both arguments must be ranges or arrays".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let mut values = Vec::with_capacity(values_left.len());
|
||||
|
||||
// Now we have:
|
||||
// - values: flattened (observed, expected)
|
||||
// - width, height: shape
|
||||
for i in 0..values_left.len() {
|
||||
match (values_left[i], values_right[i]) {
|
||||
(Some(v1), Some(v2)) => {
|
||||
values.push((v1, v2));
|
||||
}
|
||||
_ => {
|
||||
values.push((1.0, 1.0));
|
||||
}
|
||||
}
|
||||
}
|
||||
if width == 0 || height == 0 || values.len() < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"CHISQ.TEST requires at least two data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let mut chi2 = 0.0;
|
||||
for (obs, exp) in &values {
|
||||
if *obs < 0.0 || *exp < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Negative value in CHISQ.TEST data".to_string(),
|
||||
);
|
||||
}
|
||||
if *exp == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Zero expected value in CHISQ.TEST".to_string(),
|
||||
);
|
||||
}
|
||||
let diff = obs - exp;
|
||||
chi2 += (diff * diff) / exp;
|
||||
}
|
||||
|
||||
if chi2 < 0.0 && chi2 > -1e-12 {
|
||||
chi2 = 0.0;
|
||||
}
|
||||
|
||||
let total = width * height;
|
||||
if total <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"CHISQ.TEST degrees of freedom is zero".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let df = if width > 1 && height > 1 {
|
||||
(width - 1) * (height - 1)
|
||||
} else {
|
||||
total - 1
|
||||
};
|
||||
|
||||
let dist = match ChiSquared::new(df as f64) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid degrees of freedom in CHISQ.TEST".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let mut p = 1.0 - dist.cdf(chi2);
|
||||
|
||||
// clamp tiny fp noise
|
||||
if p < 0.0 && p > -1e-15 {
|
||||
p = 0.0;
|
||||
}
|
||||
if p > 1.0 && p < 1.0 + 1e-15 {
|
||||
p = 1.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(p)
|
||||
}
|
||||
}
|
||||
@@ -1,14 +1,10 @@
|
||||
use crate::constants::{LAST_COLUMN, LAST_ROW};
|
||||
use crate::expressions::parser::ArrayNode;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::{CalcResult, Range},
|
||||
expressions::parser::Node,
|
||||
expressions::token::Error,
|
||||
model::Model,
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
use super::util::build_criteria;
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_average(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
@@ -90,7 +86,6 @@ impl Model {
|
||||
}
|
||||
CalcResult::Number(sum / count)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_averagea(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
@@ -324,350 +319,26 @@ impl Model {
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() == 2 {
|
||||
let arguments = vec![args[0].clone(), args[1].clone()];
|
||||
self.fn_countifs(&arguments, cell)
|
||||
} else {
|
||||
CalcResult::new_args_number_error(cell)
|
||||
}
|
||||
}
|
||||
|
||||
/// AVERAGEIF(criteria_range, criteria, [average_range])
|
||||
/// if average_rage is missing then criteria_range will be used
|
||||
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() == 2 {
|
||||
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
|
||||
self.fn_averageifs(&arguments, cell)
|
||||
} else if args.len() == 3 {
|
||||
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
|
||||
self.fn_averageifs(&arguments, cell)
|
||||
} else {
|
||||
CalcResult::new_args_number_error(cell)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
|
||||
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let args_count = args.len();
|
||||
if args_count < 2 || !args_count.is_multiple_of(2) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let case_count = args_count / 2;
|
||||
// NB: this is a beautiful example of the borrow checker
|
||||
// The order of these two definitions cannot be swapped.
|
||||
let mut criteria = Vec::new();
|
||||
let mut fn_criteria = Vec::new();
|
||||
let ranges = &mut Vec::new();
|
||||
for case_index in 0..case_count {
|
||||
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
|
||||
criteria.push(criterion);
|
||||
// NB: We cannot do:
|
||||
// fn_criteria.push(build_criteria(&criterion));
|
||||
// because criterion doesn't live long enough
|
||||
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
|
||||
if result.is_error() {
|
||||
return result;
|
||||
}
|
||||
if let CalcResult::Range { left, right } = result {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
// TODO test ranges are of the same size as sum_range
|
||||
ranges.push(Range { left, right });
|
||||
} else {
|
||||
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
|
||||
}
|
||||
}
|
||||
for criterion in criteria.iter() {
|
||||
fn_criteria.push(build_criteria(criterion));
|
||||
}
|
||||
|
||||
let mut total = 0.0;
|
||||
let first_range = &ranges[0];
|
||||
let left_row = first_range.left.row;
|
||||
let left_column = first_range.left.column;
|
||||
let right_row = first_range.right.row;
|
||||
let right_column = first_range.right.column;
|
||||
|
||||
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
|
||||
Ok(s) => s.dimension(),
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
|
||||
)
|
||||
}
|
||||
};
|
||||
let max_row = dimension.max_row;
|
||||
let max_column = dimension.max_column;
|
||||
|
||||
let open_row = left_row == 1 && right_row == LAST_ROW;
|
||||
let open_column = left_column == 1 && right_column == LAST_COLUMN;
|
||||
|
||||
for row in left_row..right_row + 1 {
|
||||
if open_row && row > max_row {
|
||||
// If the row is larger than the max row in the sheet then all cells are empty.
|
||||
// We compute it only once
|
||||
let mut is_true = true;
|
||||
for fn_criterion in fn_criteria.iter() {
|
||||
if !fn_criterion(&CalcResult::EmptyCell) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
|
||||
}
|
||||
break;
|
||||
}
|
||||
for column in left_column..right_column + 1 {
|
||||
if open_column && column > max_column {
|
||||
// If the column is larger than the max column in the sheet then all cells are empty.
|
||||
// We compute it only once
|
||||
let mut is_true = true;
|
||||
for fn_criterion in fn_criteria.iter() {
|
||||
if !fn_criterion(&CalcResult::EmptyCell) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += (LAST_COLUMN - max_column) as f64;
|
||||
}
|
||||
break;
|
||||
}
|
||||
let mut is_true = true;
|
||||
for case_index in 0..case_count {
|
||||
// We check if value in range n meets criterion n
|
||||
let range = &ranges[case_index];
|
||||
let fn_criterion = &fn_criteria[case_index];
|
||||
let value = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: range.left.sheet,
|
||||
row: range.left.row + row - first_range.left.row,
|
||||
column: range.left.column + column - first_range.left.column,
|
||||
});
|
||||
if !fn_criterion(&value) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Number(total)
|
||||
}
|
||||
|
||||
pub(crate) fn apply_ifs<F>(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
mut apply: F,
|
||||
) -> Result<(), CalcResult>
|
||||
where
|
||||
F: FnMut(f64),
|
||||
{
|
||||
let args_count = args.len();
|
||||
if args_count < 3 || args_count.is_multiple_of(2) {
|
||||
return Err(CalcResult::new_args_number_error(cell));
|
||||
}
|
||||
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
|
||||
if arg_0.is_error() {
|
||||
return Err(arg_0);
|
||||
}
|
||||
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
|
||||
if left.sheet != right.sheet {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
));
|
||||
}
|
||||
Range { left, right }
|
||||
} else {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Expected a range".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
let case_count = (args_count - 1) / 2;
|
||||
// NB: this is a beautiful example of the borrow checker
|
||||
// The order of these two definitions cannot be swapped.
|
||||
let mut criteria = Vec::new();
|
||||
let mut fn_criteria = Vec::new();
|
||||
let ranges = &mut Vec::new();
|
||||
for case_index in 1..=case_count {
|
||||
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
|
||||
// NB: criterion might be an error. That's ok
|
||||
criteria.push(criterion);
|
||||
// NB: We cannot do:
|
||||
// fn_criteria.push(build_criteria(&criterion));
|
||||
// because criterion doesn't live long enough
|
||||
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
|
||||
if result.is_error() {
|
||||
return Err(result);
|
||||
}
|
||||
if let CalcResult::Range { left, right } = result {
|
||||
if left.sheet != right.sheet {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
));
|
||||
}
|
||||
// TODO test ranges are of the same size as sum_range
|
||||
ranges.push(Range { left, right });
|
||||
} else {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Expected a range".to_string(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for criterion in criteria.iter() {
|
||||
fn_criteria.push(build_criteria(criterion));
|
||||
}
|
||||
|
||||
let left_row = sum_range.left.row;
|
||||
let left_column = sum_range.left.column;
|
||||
let mut right_row = sum_range.right.row;
|
||||
let mut right_column = sum_range.right.column;
|
||||
|
||||
if left_row == 1 && right_row == LAST_ROW {
|
||||
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
|
||||
));
|
||||
}
|
||||
};
|
||||
}
|
||||
if left_column == 1 && right_column == LAST_COLUMN {
|
||||
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
|
||||
));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in left_row..right_row + 1 {
|
||||
for column in left_column..right_column + 1 {
|
||||
let mut is_true = true;
|
||||
for case_index in 0..case_count {
|
||||
// We check if value in range n meets criterion n
|
||||
let range = &ranges[case_index];
|
||||
let fn_criterion = &fn_criteria[case_index];
|
||||
let value = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: range.left.sheet,
|
||||
row: range.left.row + row - sum_range.left.row,
|
||||
column: range.left.column + column - sum_range.left.column,
|
||||
});
|
||||
if !fn_criterion(&value) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
let v = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: sum_range.left.sheet,
|
||||
row,
|
||||
column,
|
||||
});
|
||||
match v {
|
||||
CalcResult::Number(n) => apply(n),
|
||||
CalcResult::Error { .. } => return Err(v),
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut total = 0.0;
|
||||
let mut count = 0.0;
|
||||
|
||||
let average = |value: f64| {
|
||||
total += value;
|
||||
count += 1.0;
|
||||
};
|
||||
if let Err(e) = self.apply_ifs(args, cell, average) {
|
||||
return e;
|
||||
}
|
||||
|
||||
if count == 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::DIV,
|
||||
origin: cell,
|
||||
message: "division by 0".to_string(),
|
||||
};
|
||||
}
|
||||
CalcResult::Number(total / count)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut min = f64::INFINITY;
|
||||
let apply_min = |value: f64| min = value.min(min);
|
||||
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
|
||||
return e;
|
||||
}
|
||||
|
||||
if min.is_infinite() {
|
||||
min = 0.0;
|
||||
}
|
||||
CalcResult::Number(min)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut max = -f64::INFINITY;
|
||||
let apply_max = |value: f64| max = value.max(max);
|
||||
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
|
||||
return e;
|
||||
}
|
||||
if max.is_infinite() {
|
||||
max = 0.0;
|
||||
}
|
||||
CalcResult::Number(max)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
pub(crate) fn fn_avedev(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let mut count = 0.0;
|
||||
let mut product = 1.0;
|
||||
|
||||
let mut values: Vec<f64> = Vec::new();
|
||||
let mut sum = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(values: &mut Vec<f64>, sum: &mut f64, count: &mut u64, value: f64) {
|
||||
values.push(value);
|
||||
*sum += value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
count += 1.0;
|
||||
product *= value;
|
||||
}
|
||||
CalcResult::Boolean(b) => {
|
||||
if let Node::ReferenceKind { .. } = arg {
|
||||
} else {
|
||||
product *= if b { 1.0 } else { 0.0 };
|
||||
count += 1.0;
|
||||
}
|
||||
accumulate(&mut values, &mut sum, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
@@ -677,57 +348,99 @@ impl Model {
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
for row in left.row..(right.row + 1) {
|
||||
for column in left.column..(right.column + 1) {
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..=row2 {
|
||||
for column in column1..=column2 {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
count += 1.0;
|
||||
product *= value;
|
||||
accumulate(&mut values, &mut sum, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
CalcResult::Range { .. } => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
"Unexpected Range".to_string(),
|
||||
);
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut values, &mut sum, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
CalcResult::String(s) => {
|
||||
if let Node::ReferenceKind { .. } = arg {
|
||||
// Do nothing
|
||||
} else if let Ok(t) = s.parse::<f64>() {
|
||||
product *= t;
|
||||
count += 1.0;
|
||||
} else {
|
||||
return CalcResult::Error {
|
||||
error: Error::VALUE,
|
||||
origin: cell,
|
||||
message: "Argument cannot be cast into number".to_string(),
|
||||
};
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// Ignore everything else
|
||||
// ignore non-numeric
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
if count == 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::DIV,
|
||||
origin: cell,
|
||||
message: "Division by Zero".to_string(),
|
||||
};
|
||||
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"AVEDEV with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
CalcResult::Number(product.powf(1.0 / count))
|
||||
|
||||
let n = count as f64;
|
||||
let mean = sum / n;
|
||||
|
||||
let mut sum_abs_dev = 0.0;
|
||||
for v in &values {
|
||||
sum_abs_dev += (v - mean).abs();
|
||||
}
|
||||
|
||||
CalcResult::Number(sum_abs_dev / n)
|
||||
}
|
||||
}
|
||||
264
base/src/functions/statistical/covariance.rs
Normal file
264
base/src/functions/statistical/covariance.rs
Normal file
@@ -0,0 +1,264 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_covariance_p(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"First argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Second argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Same number of cells
|
||||
if values1_opts.len() != values2_opts.len() {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.P requires arrays of the same size".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Count numeric data points in each array (ignoring text/booleans/empty)
|
||||
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
|
||||
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
|
||||
|
||||
if count1 == 0 || count2 == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.P requires at least one numeric value in each array".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if count1 != count2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.P arrays must have the same number of numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Build paired numeric vectors, position by position
|
||||
let mut xs: Vec<f64> = Vec::with_capacity(count1);
|
||||
let mut ys: Vec<f64> = Vec::with_capacity(count2);
|
||||
|
||||
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
|
||||
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
|
||||
xs.push(x);
|
||||
ys.push(y);
|
||||
}
|
||||
}
|
||||
|
||||
let n = xs.len();
|
||||
if n == 0 {
|
||||
// Should be impossible given the checks above, but guard anyway
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.P has no paired numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n_f = n as f64;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
for i in 0..n {
|
||||
sum_x += xs[i];
|
||||
sum_y += ys[i];
|
||||
}
|
||||
let mean_x = sum_x / n_f;
|
||||
let mean_y = sum_y / n_f;
|
||||
|
||||
let mut sum_prod = 0.0;
|
||||
for i in 0..n {
|
||||
let dx = xs[i] - mean_x;
|
||||
let dy = ys[i] - mean_y;
|
||||
sum_prod += dx * dy;
|
||||
}
|
||||
|
||||
let cov = sum_prod / n_f;
|
||||
CalcResult::Number(cov)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_covariance_s(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"First argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Second argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Same number of cells
|
||||
if values1_opts.len() != values2_opts.len() {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.S requires arrays of the same size".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Count numeric data points in each array (ignoring text/booleans/empty)
|
||||
let count1 = values1_opts.iter().filter(|v| v.is_some()).count();
|
||||
let count2 = values2_opts.iter().filter(|v| v.is_some()).count();
|
||||
|
||||
if count1 == 0 || count2 == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.S requires numeric values in each array".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if count1 != count2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"COVARIANCE.S arrays must have the same number of numeric data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Build paired numeric vectors
|
||||
let mut xs: Vec<f64> = Vec::with_capacity(count1);
|
||||
let mut ys: Vec<f64> = Vec::with_capacity(count2);
|
||||
|
||||
for (v1_opt, v2_opt) in values1_opts.into_iter().zip(values2_opts.into_iter()) {
|
||||
if let (Some(x), Some(y)) = (v1_opt, v2_opt) {
|
||||
xs.push(x);
|
||||
ys.push(y);
|
||||
}
|
||||
}
|
||||
|
||||
let n = xs.len();
|
||||
if n < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"COVARIANCE.S requires at least two paired data points".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n_f = n as f64;
|
||||
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
for i in 0..n {
|
||||
sum_x += xs[i];
|
||||
sum_y += ys[i];
|
||||
}
|
||||
let mean_x = sum_x / n_f;
|
||||
let mean_y = sum_y / n_f;
|
||||
|
||||
let mut sum_prod = 0.0;
|
||||
for i in 0..n {
|
||||
let dx = xs[i] - mean_x;
|
||||
let dy = ys[i] - mean_y;
|
||||
sum_prod += dx * dy;
|
||||
}
|
||||
|
||||
let cov = sum_prod / (n_f - 1.0);
|
||||
|
||||
CalcResult::Number(cov)
|
||||
}
|
||||
}
|
||||
135
base/src/functions/statistical/devsq.rs
Normal file
135
base/src/functions/statistical/devsq.rs
Normal file
@@ -0,0 +1,135 @@
|
||||
use crate::constants::{LAST_COLUMN, LAST_ROW};
|
||||
use crate::expressions::parser::ArrayNode;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// DEVSQ(number1, [number2], ...)
|
||||
pub(crate) fn fn_devsq(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
// tiny helper so we don't repeat ourselves
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// We ignore booleans and strings
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// We ignore booleans and strings
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// We ignore booleans and strings
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
if count == 0 {
|
||||
// No numeric data at all
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"DEVSQ with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut result = sumsq - (sum * sum) / n;
|
||||
|
||||
// Numerical noise can make result slightly negative when it should be 0
|
||||
if result < 0.0 && result > -1e-12 {
|
||||
result = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
54
base/src/functions/statistical/exponential.rs
Normal file
54
base/src/functions/statistical/exponential.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_expon_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// EXPON.DIST(x, lambda, cumulative)
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let lambda = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[2], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 || lambda <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for EXPON.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let result = if cumulative {
|
||||
// CDF
|
||||
1.0 - (-lambda * x).exp()
|
||||
} else {
|
||||
// PDF
|
||||
lambda * (-lambda * x).exp()
|
||||
};
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for EXPON.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
299
base/src/functions/statistical/fisher.rs
Normal file
299
base/src/functions/statistical/fisher.rs
Normal file
@@ -0,0 +1,299 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, FisherSnedecor};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// FISHER(x) = 0.5 * ln((1 + x) / (1 - x))
|
||||
pub(crate) fn fn_fisher(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x <= -1.0 || x >= 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "x must be between -1 and 1 (exclusive) in FISHER".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let ratio = (1.0 + x) / (1.0 - x);
|
||||
let result = 0.5 * ratio.ln();
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for FISHER".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// FISHERINV(y) = (e^(2y) - 1) / (e^(2y) + 1) = tanh(y)
|
||||
pub(crate) fn fn_fisher_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let y = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Use tanh directly to avoid overflow from exp(2y)
|
||||
let result = y.tanh();
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for FISHERINV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// F.DIST(x, deg_freedom1, deg_freedom2, cumulative)
|
||||
pub(crate) fn fn_f_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df1 = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df2 = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Excel domain checks
|
||||
if x < 0.0 {
|
||||
return CalcResult::new_error(Error::NUM, cell, "x must be >= 0 in F.DIST".to_string());
|
||||
}
|
||||
if df1 < 1.0 || df2 < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in F.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match FisherSnedecor::new(df1, df2) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for F distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for F.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_f_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// F.DIST.RT(x, deg_freedom1, deg_freedom2)
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df1 = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df2 = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"x must be >= 0 in F.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
if df1 < 1.0 || df2 < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in F.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match FisherSnedecor::new(df1, df2) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for F distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// Right-tail probability: P(F > x) = 1 - CDF(x)
|
||||
let result = 1.0 - dist.cdf(x);
|
||||
|
||||
if result.is_nan() || result.is_infinite() || result < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for F.DIST.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// F.INV(probability, deg_freedom1, deg_freedom2)
|
||||
pub(crate) fn fn_f_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df1 = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df2 = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// probability < 0 or > 1 → #NUM!
|
||||
if !(0.0..=1.0).contains(&p) {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in [0,1] in F.INV".to_string(),
|
||||
);
|
||||
}
|
||||
if df1 < 1.0 || df2 < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in F.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match FisherSnedecor::new(df1, df2) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for F distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let x = dist.inverse_cdf(p);
|
||||
if x.is_nan() || x.is_infinite() || x < 0.0 {
|
||||
return CalcResult::new_error(Error::NUM, cell, "Invalid result for F.INV".to_string());
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
// F.INV.RT(probability, deg_freedom1, deg_freedom2)
|
||||
pub(crate) fn fn_f_inv_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df1 = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
let df2 = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if p <= 0.0 || p > 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in (0,1] in F.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
if df1 < 1.0 || df2 < 1.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"degrees of freedom must be >= 1 in F.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match FisherSnedecor::new(df1, df2) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for F distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// p is right-tail: p = P(F > x) = 1 - CDF(x)
|
||||
let x = dist.inverse_cdf(1.0 - p);
|
||||
if x.is_nan() || x.is_infinite() || x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for F.INV.RT".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
}
|
||||
194
base/src/functions/statistical/gamma.rs
Normal file
194
base/src/functions/statistical/gamma.rs
Normal file
@@ -0,0 +1,194 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, Gamma};
|
||||
use statrs::function::gamma::{gamma, ln_gamma};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_gamma(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(s) => return s,
|
||||
};
|
||||
if x < 0.0 && x.floor() == x {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for Gamma function".to_string(),
|
||||
};
|
||||
}
|
||||
let result = gamma(x);
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for Gamma function".to_string(),
|
||||
};
|
||||
}
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_gamma_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// GAMMA.DIST(x, alpha, beta, cumulative)
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let alpha = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"x must be >= 0 in GAMMA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
if alpha <= 0.0 || beta_scale <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"alpha and beta must be > 0 in GAMMA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let rate = 1.0 / beta_scale;
|
||||
|
||||
let dist = match Gamma::new(alpha, rate) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Gamma distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for GAMMA.DIST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_gamma_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// GAMMA.INV(probability, alpha, beta)
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let alpha = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let beta_scale = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if !(0.0..=1.0).contains(&p) {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"probability must be in [0,1] in GAMMA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
if alpha <= 0.0 || beta_scale <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"alpha and beta must be > 0 in GAMMA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let rate = 1.0 / beta_scale;
|
||||
|
||||
let dist = match Gamma::new(alpha, rate) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Gamma distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let x = dist.inverse_cdf(p);
|
||||
if x.is_nan() || x.is_infinite() || x < 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid result for GAMMA.INV".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_gamma_ln(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(s) => return s,
|
||||
};
|
||||
if x < 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for Gamma function".to_string(),
|
||||
};
|
||||
}
|
||||
let result = ln_gamma(x);
|
||||
if result.is_nan() || result.is_infinite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for Gamma Ln function".to_string(),
|
||||
};
|
||||
}
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_gamma_ln_precise(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
self.fn_gamma_ln(args, cell)
|
||||
}
|
||||
}
|
||||
87
base/src/functions/statistical/geomean.rs
Normal file
87
base/src/functions/statistical/geomean.rs
Normal file
@@ -0,0 +1,87 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_geomean(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
let mut count = 0.0;
|
||||
let mut product = 1.0;
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
count += 1.0;
|
||||
product *= value;
|
||||
}
|
||||
CalcResult::Boolean(b) => {
|
||||
if let Node::ReferenceKind { .. } = arg {
|
||||
} else {
|
||||
product *= if b { 1.0 } else { 0.0 };
|
||||
count += 1.0;
|
||||
}
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
for row in left.row..(right.row + 1) {
|
||||
for column in left.column..(right.column + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
count += 1.0;
|
||||
product *= value;
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
CalcResult::Range { .. } => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
"Unexpected Range".to_string(),
|
||||
);
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
CalcResult::String(s) => {
|
||||
if let Node::ReferenceKind { .. } = arg {
|
||||
// Do nothing
|
||||
} else if let Ok(t) = s.parse::<f64>() {
|
||||
product *= t;
|
||||
count += 1.0;
|
||||
} else {
|
||||
return CalcResult::Error {
|
||||
error: Error::VALUE,
|
||||
origin: cell,
|
||||
message: "Argument cannot be cast into number".to_string(),
|
||||
};
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// Ignore everything else
|
||||
}
|
||||
};
|
||||
}
|
||||
if count == 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::DIV,
|
||||
origin: cell,
|
||||
message: "Division by Zero".to_string(),
|
||||
};
|
||||
}
|
||||
CalcResult::Number(product.powf(1.0 / count))
|
||||
}
|
||||
}
|
||||
108
base/src/functions/statistical/hypegeom.rs
Normal file
108
base/src/functions/statistical/hypegeom.rs
Normal file
@@ -0,0 +1,108 @@
|
||||
use statrs::distribution::{Discrete, DiscreteCDF, Hypergeometric};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// =HYPGEOM.DIST(sample_s, number_sample, population_s, number_pop, cumulative)
|
||||
pub(crate) fn fn_hyp_geom_dist(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 5 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
// sample_s (number of successes in the sample)
|
||||
let sample_s = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// number_sample (sample size)
|
||||
let number_sample = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// population_s (number of successes in the population)
|
||||
let population_s = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// number_pop (population size)
|
||||
let number_pop = match self.get_number_no_bools(&args[3], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[4], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if sample_s < 0.0 || sample_s > f64::min(number_sample, population_s) {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
if sample_s < f64::max(0.0, number_sample + population_s - number_pop) {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
if number_sample <= 0.0 || number_sample > number_pop {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
if population_s <= 0.0 || population_s > number_pop {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for HYPGEOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let n_pop = number_pop as u64;
|
||||
let k_pop = population_s as u64;
|
||||
let n_sample = number_sample as u64;
|
||||
let k = sample_s as u64;
|
||||
|
||||
let dist = match Hypergeometric::new(n_pop, k_pop, n_sample) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for hypergeometric distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
|
||||
|
||||
if !prob.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for HYPGEOM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(prob)
|
||||
}
|
||||
}
|
||||
337
base/src/functions/statistical/if_ifs.rs
Normal file
337
base/src/functions/statistical/if_ifs.rs
Normal file
@@ -0,0 +1,337 @@
|
||||
use crate::constants::{LAST_COLUMN, LAST_ROW};
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::functions::util::build_criteria;
|
||||
use crate::{
|
||||
calc_result::{CalcResult, Range},
|
||||
expressions::parser::Node,
|
||||
expressions::token::Error,
|
||||
model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_countif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() == 2 {
|
||||
let arguments = vec![args[0].clone(), args[1].clone()];
|
||||
self.fn_countifs(&arguments, cell)
|
||||
} else {
|
||||
CalcResult::new_args_number_error(cell)
|
||||
}
|
||||
}
|
||||
|
||||
/// AVERAGEIF(criteria_range, criteria, [average_range])
|
||||
/// if average_rage is missing then criteria_range will be used
|
||||
pub(crate) fn fn_averageif(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() == 2 {
|
||||
let arguments = vec![args[0].clone(), args[0].clone(), args[1].clone()];
|
||||
self.fn_averageifs(&arguments, cell)
|
||||
} else if args.len() == 3 {
|
||||
let arguments = vec![args[2].clone(), args[0].clone(), args[1].clone()];
|
||||
self.fn_averageifs(&arguments, cell)
|
||||
} else {
|
||||
CalcResult::new_args_number_error(cell)
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: This function shares a lot of code with apply_ifs. Can we merge them?
|
||||
pub(crate) fn fn_countifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let args_count = args.len();
|
||||
if args_count < 2 || !args_count.is_multiple_of(2) {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let case_count = args_count / 2;
|
||||
// NB: this is a beautiful example of the borrow checker
|
||||
// The order of these two definitions cannot be swapped.
|
||||
let mut criteria = Vec::new();
|
||||
let mut fn_criteria = Vec::new();
|
||||
let ranges = &mut Vec::new();
|
||||
for case_index in 0..case_count {
|
||||
let criterion = self.evaluate_node_in_context(&args[case_index * 2 + 1], cell);
|
||||
criteria.push(criterion);
|
||||
// NB: We cannot do:
|
||||
// fn_criteria.push(build_criteria(&criterion));
|
||||
// because criterion doesn't live long enough
|
||||
let result = self.evaluate_node_in_context(&args[case_index * 2], cell);
|
||||
if result.is_error() {
|
||||
return result;
|
||||
}
|
||||
if let CalcResult::Range { left, right } = result {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
// TODO test ranges are of the same size as sum_range
|
||||
ranges.push(Range { left, right });
|
||||
} else {
|
||||
return CalcResult::new_error(Error::VALUE, cell, "Expected a range".to_string());
|
||||
}
|
||||
}
|
||||
for criterion in criteria.iter() {
|
||||
fn_criteria.push(build_criteria(criterion));
|
||||
}
|
||||
|
||||
let mut total = 0.0;
|
||||
let first_range = &ranges[0];
|
||||
let left_row = first_range.left.row;
|
||||
let left_column = first_range.left.column;
|
||||
let right_row = first_range.right.row;
|
||||
let right_column = first_range.right.column;
|
||||
|
||||
let dimension = match self.workbook.worksheet(first_range.left.sheet) {
|
||||
Ok(s) => s.dimension(),
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", first_range.left.sheet),
|
||||
)
|
||||
}
|
||||
};
|
||||
let max_row = dimension.max_row;
|
||||
let max_column = dimension.max_column;
|
||||
|
||||
let open_row = left_row == 1 && right_row == LAST_ROW;
|
||||
let open_column = left_column == 1 && right_column == LAST_COLUMN;
|
||||
|
||||
for row in left_row..right_row + 1 {
|
||||
if open_row && row > max_row {
|
||||
// If the row is larger than the max row in the sheet then all cells are empty.
|
||||
// We compute it only once
|
||||
let mut is_true = true;
|
||||
for fn_criterion in fn_criteria.iter() {
|
||||
if !fn_criterion(&CalcResult::EmptyCell) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += ((LAST_ROW - max_row) * (right_column - left_column + 1)) as f64;
|
||||
}
|
||||
break;
|
||||
}
|
||||
for column in left_column..right_column + 1 {
|
||||
if open_column && column > max_column {
|
||||
// If the column is larger than the max column in the sheet then all cells are empty.
|
||||
// We compute it only once
|
||||
let mut is_true = true;
|
||||
for fn_criterion in fn_criteria.iter() {
|
||||
if !fn_criterion(&CalcResult::EmptyCell) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += (LAST_COLUMN - max_column) as f64;
|
||||
}
|
||||
break;
|
||||
}
|
||||
let mut is_true = true;
|
||||
for case_index in 0..case_count {
|
||||
// We check if value in range n meets criterion n
|
||||
let range = &ranges[case_index];
|
||||
let fn_criterion = &fn_criteria[case_index];
|
||||
let value = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: range.left.sheet,
|
||||
row: range.left.row + row - first_range.left.row,
|
||||
column: range.left.column + column - first_range.left.column,
|
||||
});
|
||||
if !fn_criterion(&value) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
total += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Number(total)
|
||||
}
|
||||
|
||||
pub(crate) fn apply_ifs<F>(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
mut apply: F,
|
||||
) -> Result<(), CalcResult>
|
||||
where
|
||||
F: FnMut(f64),
|
||||
{
|
||||
let args_count = args.len();
|
||||
if args_count < 3 || args_count.is_multiple_of(2) {
|
||||
return Err(CalcResult::new_args_number_error(cell));
|
||||
}
|
||||
let arg_0 = self.evaluate_node_in_context(&args[0], cell);
|
||||
if arg_0.is_error() {
|
||||
return Err(arg_0);
|
||||
}
|
||||
let sum_range = if let CalcResult::Range { left, right } = arg_0 {
|
||||
if left.sheet != right.sheet {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
));
|
||||
}
|
||||
Range { left, right }
|
||||
} else {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Expected a range".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
let case_count = (args_count - 1) / 2;
|
||||
// NB: this is a beautiful example of the borrow checker
|
||||
// The order of these two definitions cannot be swapped.
|
||||
let mut criteria = Vec::new();
|
||||
let mut fn_criteria = Vec::new();
|
||||
let ranges = &mut Vec::new();
|
||||
for case_index in 1..=case_count {
|
||||
let criterion = self.evaluate_node_in_context(&args[case_index * 2], cell);
|
||||
// NB: criterion might be an error. That's ok
|
||||
criteria.push(criterion);
|
||||
// NB: We cannot do:
|
||||
// fn_criteria.push(build_criteria(&criterion));
|
||||
// because criterion doesn't live long enough
|
||||
let result = self.evaluate_node_in_context(&args[case_index * 2 - 1], cell);
|
||||
if result.is_error() {
|
||||
return Err(result);
|
||||
}
|
||||
if let CalcResult::Range { left, right } = result {
|
||||
if left.sheet != right.sheet {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
));
|
||||
}
|
||||
// TODO test ranges are of the same size as sum_range
|
||||
ranges.push(Range { left, right });
|
||||
} else {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Expected a range".to_string(),
|
||||
));
|
||||
}
|
||||
}
|
||||
for criterion in criteria.iter() {
|
||||
fn_criteria.push(build_criteria(criterion));
|
||||
}
|
||||
|
||||
let left_row = sum_range.left.row;
|
||||
let left_column = sum_range.left.column;
|
||||
let mut right_row = sum_range.right.row;
|
||||
let mut right_column = sum_range.right.column;
|
||||
|
||||
if left_row == 1 && right_row == LAST_ROW {
|
||||
right_row = match self.workbook.worksheet(sum_range.left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
|
||||
));
|
||||
}
|
||||
};
|
||||
}
|
||||
if left_column == 1 && right_column == LAST_COLUMN {
|
||||
right_column = match self.workbook.worksheet(sum_range.left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return Err(CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", sum_range.left.sheet),
|
||||
));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in left_row..right_row + 1 {
|
||||
for column in left_column..right_column + 1 {
|
||||
let mut is_true = true;
|
||||
for case_index in 0..case_count {
|
||||
// We check if value in range n meets criterion n
|
||||
let range = &ranges[case_index];
|
||||
let fn_criterion = &fn_criteria[case_index];
|
||||
let value = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: range.left.sheet,
|
||||
row: range.left.row + row - sum_range.left.row,
|
||||
column: range.left.column + column - sum_range.left.column,
|
||||
});
|
||||
if !fn_criterion(&value) {
|
||||
is_true = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if is_true {
|
||||
let v = self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: sum_range.left.sheet,
|
||||
row,
|
||||
column,
|
||||
});
|
||||
match v {
|
||||
CalcResult::Number(n) => apply(n),
|
||||
CalcResult::Error { .. } => return Err(v),
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn fn_averageifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut total = 0.0;
|
||||
let mut count = 0.0;
|
||||
|
||||
let average = |value: f64| {
|
||||
total += value;
|
||||
count += 1.0;
|
||||
};
|
||||
if let Err(e) = self.apply_ifs(args, cell, average) {
|
||||
return e;
|
||||
}
|
||||
|
||||
if count == 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::DIV,
|
||||
origin: cell,
|
||||
message: "division by 0".to_string(),
|
||||
};
|
||||
}
|
||||
CalcResult::Number(total / count)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_minifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut min = f64::INFINITY;
|
||||
let apply_min = |value: f64| min = value.min(min);
|
||||
if let Err(e) = self.apply_ifs(args, cell, apply_min) {
|
||||
return e;
|
||||
}
|
||||
|
||||
if min.is_infinite() {
|
||||
min = 0.0;
|
||||
}
|
||||
CalcResult::Number(min)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_maxifs(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
let mut max = -f64::INFINITY;
|
||||
let apply_max = |value: f64| max = value.max(max);
|
||||
if let Err(e) = self.apply_ifs(args, cell, apply_max) {
|
||||
return e;
|
||||
}
|
||||
if max.is_infinite() {
|
||||
max = 0.0;
|
||||
}
|
||||
CalcResult::Number(max)
|
||||
}
|
||||
}
|
||||
124
base/src/functions/statistical/log_normal.rs
Normal file
124
base/src/functions/statistical/log_normal.rs
Normal file
@@ -0,0 +1,124 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, LogNormal};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_log_norm_dist(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let mean = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Excel domain checks
|
||||
if x <= 0.0 || std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match LogNormal::new(mean, std_dev) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_log_norm_inv(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
use statrs::distribution::{ContinuousCDF, LogNormal};
|
||||
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let mean = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Excel domain checks
|
||||
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match LogNormal::new(mean, std_dev) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.INV".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = dist.inverse_cdf(p);
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameter for LOGNORM.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
23
base/src/functions/statistical/mod.rs
Normal file
23
base/src/functions/statistical/mod.rs
Normal file
@@ -0,0 +1,23 @@
|
||||
mod beta;
|
||||
mod binom;
|
||||
mod chisq;
|
||||
mod count_and_average;
|
||||
mod covariance;
|
||||
mod devsq;
|
||||
mod exponential;
|
||||
mod fisher;
|
||||
mod gamma;
|
||||
mod geomean;
|
||||
mod hypegeom;
|
||||
mod if_ifs;
|
||||
mod log_normal;
|
||||
mod normal;
|
||||
mod pearson;
|
||||
mod phi;
|
||||
mod poisson;
|
||||
mod standard_dev;
|
||||
mod standardize;
|
||||
mod t_dist;
|
||||
mod variance;
|
||||
mod weibull;
|
||||
mod z_test;
|
||||
325
base/src/functions/statistical/normal.rs
Normal file
325
base/src/functions/statistical/normal.rs
Normal file
@@ -0,0 +1,325 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, Normal, StudentsT};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// NORM.DIST(x, mean, standard_dev, cumulative)
|
||||
pub(crate) fn fn_norm_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let mean = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Excel: standard_dev must be > 0
|
||||
if std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "standard_dev must be > 0 in NORM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match Normal::new(mean, std_dev) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for NORM.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for NORM.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// NORM.INV(probability, mean, standard_dev)
|
||||
pub(crate) fn fn_norm_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let mean = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if p <= 0.0 || p >= 1.0 || std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for NORM.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match Normal::new(mean, std_dev) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for NORM.INV".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let x = dist.inverse_cdf(p);
|
||||
|
||||
if !x.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for NORM.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
// NORM.S.DIST(z, cumulative)
|
||||
pub(crate) fn fn_norm_s_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let z = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let cumulative = match self.get_boolean(&args[1], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let dist = match Normal::new(0.0, 1.0) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::ERROR,
|
||||
origin: cell,
|
||||
message: "Failed to construct standard normal distribution".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(z) } else { dist.pdf(z) };
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for NORM.S.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// NORM.S.INV(probability)
|
||||
pub(crate) fn fn_norm_s_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if p <= 0.0 || p >= 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "probability must be in (0,1) in NORM.S.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match Normal::new(0.0, 1.0) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::ERROR,
|
||||
origin: cell,
|
||||
message: "Failed to construct standard normal distribution".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let z = dist.inverse_cdf(p);
|
||||
|
||||
if !z.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for NORM.S.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(z)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_confidence_norm(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let alpha = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let size = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.floor(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for CONFIDENCE.NORM".to_string(),
|
||||
};
|
||||
}
|
||||
if size < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Sample size must be at least 1".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let normal = match Normal::new(0.0, 1.0) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
"Failed to construct normal distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
let quantile = normal.inverse_cdf(1.0 - alpha / 2.0);
|
||||
if !quantile.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid quantile for CONFIDENCE.NORM".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let margin = quantile * std_dev / size.sqrt();
|
||||
CalcResult::Number(margin)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_confidence_t(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let alpha = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let size = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Domain checks
|
||||
if alpha <= 0.0 || alpha >= 1.0 || std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for CONFIDENCE.T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
// Need at least 2 observations so df = n - 1 > 0
|
||||
if size < 2.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::DIV,
|
||||
origin: cell,
|
||||
message: "Sample size must be at least 2".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let df = size - 1.0;
|
||||
|
||||
let t_dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
"Failed to construct Student's t distribution".to_string(),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// Two-sided CI => use 1 - alpha/2
|
||||
let t_crit = t_dist.inverse_cdf(1.0 - alpha / 2.0);
|
||||
if !t_crit.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid quantile for CONFIDENCE.T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let margin = t_crit * std_dev / size.sqrt();
|
||||
CalcResult::Number(margin)
|
||||
}
|
||||
}
|
||||
235
base/src/functions/statistical/pearson.rs
Normal file
235
base/src/functions/statistical/pearson.rs
Normal file
@@ -0,0 +1,235 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::functions::statistical::chisq::is_same_shape_or_1d;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// PEARSON(array1, array2)
|
||||
pub(crate) fn fn_pearson(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let left_arg = self.evaluate_node_in_context(&args[0], cell);
|
||||
let right_arg = self.evaluate_node_in_context(&args[1], cell);
|
||||
|
||||
let (values_left, values_right) = match (left_arg, right_arg) {
|
||||
(
|
||||
CalcResult::Range {
|
||||
left: l1,
|
||||
right: r1,
|
||||
},
|
||||
CalcResult::Range {
|
||||
left: l2,
|
||||
right: r2,
|
||||
},
|
||||
) => {
|
||||
if l1.sheet != l2.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let rows1 = r1.row - l1.row + 1;
|
||||
let cols1 = r1.column - l1.column + 1;
|
||||
let rows2 = r2.row - l2.row + 1;
|
||||
let cols2 = r2.column - l2.column + 1;
|
||||
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let values_left = match self.values_from_range(l1, r1) {
|
||||
Err(error) => return error,
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_range(l2, r2) {
|
||||
Err(error) => return error,
|
||||
Ok(v) => v,
|
||||
};
|
||||
|
||||
(values_left, values_right)
|
||||
}
|
||||
(
|
||||
CalcResult::Array(left),
|
||||
CalcResult::Range {
|
||||
left: l2,
|
||||
right: r2,
|
||||
},
|
||||
) => {
|
||||
let rows2 = r2.row - l2.row + 1;
|
||||
let cols2 = r2.column - l2.column + 1;
|
||||
|
||||
let rows1 = left.len() as i32;
|
||||
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
|
||||
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Array and range must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let values_left = match self.values_from_array(left) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_range(l2, r2) {
|
||||
Err(error) => return error,
|
||||
Ok(v) => v,
|
||||
};
|
||||
|
||||
(values_left, values_right)
|
||||
}
|
||||
(
|
||||
CalcResult::Range {
|
||||
left: l1,
|
||||
right: r1,
|
||||
},
|
||||
CalcResult::Array(right),
|
||||
) => {
|
||||
let rows1 = r1.row - l1.row + 1;
|
||||
let cols1 = r1.column - l1.column + 1;
|
||||
|
||||
let rows2 = right.len() as i32;
|
||||
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
|
||||
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Range and array must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let values_left = match self.values_from_range(l1, r1) {
|
||||
Err(error) => return error,
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_array(right) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
|
||||
(values_left, values_right)
|
||||
}
|
||||
(CalcResult::Array(left), CalcResult::Array(right)) => {
|
||||
let rows1 = left.len() as i32;
|
||||
let rows2 = right.len() as i32;
|
||||
let cols1 = if rows1 > 0 { left[0].len() as i32 } else { 0 };
|
||||
let cols2 = if rows2 > 0 { right[0].len() as i32 } else { 0 };
|
||||
|
||||
if !is_same_shape_or_1d(rows1, cols1, rows2, cols2) {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Arrays must be of the same shape".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let values_left = match self.values_from_array(left) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
let values_right = match self.values_from_array(right) {
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
Ok(v) => v,
|
||||
};
|
||||
|
||||
(values_left, values_right)
|
||||
}
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Both arguments must be ranges or arrays".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Flatten into (x, y) pairs, skipping non-numeric entries (None)
|
||||
let mut n: f64 = 0.0;
|
||||
let mut sum_x = 0.0;
|
||||
let mut sum_y = 0.0;
|
||||
let mut sum_x2 = 0.0;
|
||||
let mut sum_y2 = 0.0;
|
||||
let mut sum_xy = 0.0;
|
||||
|
||||
let len = values_left.len().min(values_right.len());
|
||||
for i in 0..len {
|
||||
match (values_left[i], values_right[i]) {
|
||||
(Some(x), Some(y)) => {
|
||||
n += 1.0;
|
||||
sum_x += x;
|
||||
sum_y += y;
|
||||
sum_x2 += x * x;
|
||||
sum_y2 += y * y;
|
||||
sum_xy += x * y;
|
||||
}
|
||||
_ => {
|
||||
// Ignore pairs where at least one side is non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if n < 2.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"PEARSON requires at least two numeric pairs".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Pearson correlation:
|
||||
// r = [ n*Σxy - (Σx)(Σy) ] / sqrt( [n*Σx² - (Σx)²] [n*Σy² - (Σy)²] )
|
||||
let num = n * sum_xy - sum_x * sum_y;
|
||||
let denom_x = n * sum_x2 - sum_x * sum_x;
|
||||
let denom_y = n * sum_y2 - sum_y * sum_y;
|
||||
|
||||
if denom_x.abs() < 1e-15 || denom_y.abs() < 1e-15 {
|
||||
// Zero variance in at least one series
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"PEARSON cannot be computed when one series has zero variance".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let denom = (denom_x * denom_y).sqrt();
|
||||
let r = num / denom;
|
||||
|
||||
CalcResult::Number(r)
|
||||
}
|
||||
}
|
||||
21
base/src/functions/statistical/phi.rs
Normal file
21
base/src/functions/statistical/phi.rs
Normal file
@@ -0,0 +1,21 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
|
||||
|
||||
impl Model {
|
||||
// PHI(x) = standard normal PDF at x
|
||||
pub(crate) fn fn_phi(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 1 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// Standard normal PDF: (1 / sqrt(2π)) * exp(-x^2 / 2)
|
||||
let result = (-(x * x) / 2.0).exp() / (2.0 * std::f64::consts::PI).sqrt();
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
94
base/src/functions/statistical/poisson.rs
Normal file
94
base/src/functions/statistical/poisson.rs
Normal file
@@ -0,0 +1,94 @@
|
||||
use statrs::distribution::{Discrete, DiscreteCDF, Poisson};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// =POISSON.DIST(x, mean, cumulative)
|
||||
pub(crate) fn fn_poisson_dist(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
// x
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
// mean (lambda)
|
||||
let lambda = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[2], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 || lambda < 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for POISSON.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
// Guard against insane k for u64
|
||||
if x < 0.0 || x > (u64::MAX as f64) {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for POISSON.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let k = x as u64;
|
||||
|
||||
// Special-case lambda = 0: degenerate distribution at 0
|
||||
if lambda == 0.0 {
|
||||
let result = if cumulative {
|
||||
// For x >= 0, P(X <= x) = 1
|
||||
1.0
|
||||
} else {
|
||||
// P(X = 0) = 1, P(X = k>0) = 0
|
||||
if k == 0 {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
};
|
||||
return CalcResult::Number(result);
|
||||
}
|
||||
|
||||
let dist = match Poisson::new(lambda) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for POISSON.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let prob = if cumulative { dist.cdf(k) } else { dist.pmf(k) };
|
||||
|
||||
if !prob.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for POISSON.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(prob)
|
||||
}
|
||||
}
|
||||
519
base/src/functions/statistical/standard_dev.rs
Normal file
519
base/src/functions/statistical/standard_dev.rs
Normal file
@@ -0,0 +1,519 @@
|
||||
use crate::constants::{LAST_COLUMN, LAST_ROW};
|
||||
use crate::expressions::parser::ArrayNode;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_stdev_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"STDEV.P with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / n;
|
||||
|
||||
// clamp tiny negatives from FP noise
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var.sqrt())
|
||||
}
|
||||
|
||||
pub(crate) fn fn_stdev_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"STDEV.S requires at least two numeric values".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var.sqrt())
|
||||
}
|
||||
|
||||
pub(crate) fn fn_stdeva(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::String(_) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
|
||||
}
|
||||
CalcResult::Boolean(value) => {
|
||||
let val = if value { 1.0 } else { 0.0 };
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, val);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"STDEVA requires at least two numeric values".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var.sqrt())
|
||||
}
|
||||
|
||||
pub(crate) fn fn_stdevpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::String(_) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
|
||||
}
|
||||
CalcResult::Boolean(value) => {
|
||||
let val = if value { 1.0 } else { 0.0 };
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, val);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"STDEVPA with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / n;
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var.sqrt())
|
||||
}
|
||||
}
|
||||
38
base/src/functions/statistical/standardize.rs
Normal file
38
base/src/functions/statistical/standardize.rs
Normal file
@@ -0,0 +1,38 @@
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_standardize(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// STANDARDIZE(x, mean, standard_dev)
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let mean = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
let std_dev = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if std_dev <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "standard_dev must be > 0 in STANDARDIZE".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let z = (x - mean) / std_dev;
|
||||
|
||||
CalcResult::Number(z)
|
||||
}
|
||||
}
|
||||
588
base/src/functions/statistical/t_dist.rs
Normal file
588
base/src/functions/statistical/t_dist.rs
Normal file
@@ -0,0 +1,588 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, StudentsT};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
fn mean(xs: &[f64]) -> f64 {
|
||||
let n = xs.len();
|
||||
if n == 0 {
|
||||
return 0.0;
|
||||
}
|
||||
let mut s = 0.0;
|
||||
for &x in xs {
|
||||
s += x;
|
||||
}
|
||||
s / (n as f64)
|
||||
}
|
||||
|
||||
fn sample_var(xs: &[f64]) -> f64 {
|
||||
let n = xs.len();
|
||||
if n < 2 {
|
||||
return 0.0;
|
||||
}
|
||||
let m = mean(xs);
|
||||
let mut s = 0.0;
|
||||
for &x in xs {
|
||||
let d = x - m;
|
||||
s += d * d;
|
||||
}
|
||||
s / ((n - 1) as f64)
|
||||
}
|
||||
|
||||
enum TTestType {
|
||||
Paired,
|
||||
TwoSampleEqualVar,
|
||||
TwoSampleUnequalVar,
|
||||
}
|
||||
|
||||
enum TTestTails {
|
||||
OneTailed,
|
||||
TwoTailed,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
// T.DIST(x, deg_freedom, cumulative)
|
||||
pub(crate) fn fn_t_dist(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[2], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if df < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "deg_freedom must be >= 1 in T.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for T.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// T.DIST.2T(x, deg_freedom)
|
||||
pub(crate) fn fn_t_dist_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "x must be >= 0 in T.DIST.2T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
if df < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "deg_freedom must be >= 1 in T.DIST.2T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.DIST.2T".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let upper_tail = 1.0 - dist.cdf(x);
|
||||
let mut result = 2.0 * upper_tail;
|
||||
|
||||
result = result.clamp(0.0, 1.0);
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for T.DIST.2T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// T.DIST.RT(x, deg_freedom)
|
||||
pub(crate) fn fn_t_dist_rt(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if df < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "deg_freedom must be >= 1 in T.DIST.RT".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.DIST.RT".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = 1.0 - dist.cdf(x);
|
||||
|
||||
if !result.is_finite() || result < 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for T.DIST.RT".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
|
||||
// T.INV(probability, deg_freedom)
|
||||
pub(crate) fn fn_t_inv(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if p <= 0.0 || p >= 1.0 || df < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.INV".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let x = dist.inverse_cdf(p);
|
||||
|
||||
if !x.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for T.INV".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(x)
|
||||
}
|
||||
|
||||
// T.INV.2T(probability, deg_freedom)
|
||||
pub(crate) fn fn_t_inv_2t(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 2 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let p = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let df = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f.trunc(),
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if p <= 0.0 || p > 1.0 || df < 1.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.INV.2T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for T.INV.2T".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Two-sided: F(x) = 1 - p/2
|
||||
let target_cdf = 1.0 - p / 2.0;
|
||||
let x = dist.inverse_cdf(target_cdf);
|
||||
|
||||
if !x.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for T.INV.2T".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(x.abs())
|
||||
}
|
||||
|
||||
// T.TEST(array1, array2, tails, type)
|
||||
pub(crate) fn fn_t_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let values1_opts = match self.evaluate_node_in_context(&args[0], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in first array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"First argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let values2_opts = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(a) => match self.values_from_array(a) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in second array: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Second argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let tails = match self.get_number(&args[2], cell) {
|
||||
Ok(f) => {
|
||||
let tf = f.trunc();
|
||||
if tf == 1.0 {
|
||||
TTestTails::OneTailed
|
||||
} else if tf == 2.0 {
|
||||
TTestTails::TwoTailed
|
||||
} else {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"tails must be 1 or 2".to_string(),
|
||||
);
|
||||
}
|
||||
}
|
||||
Err(e) => return e,
|
||||
};
|
||||
let test_type = match self.get_number(&args[3], cell) {
|
||||
Ok(f) => {
|
||||
let tf = f.trunc();
|
||||
match tf {
|
||||
1.0 => TTestType::Paired,
|
||||
2.0 => TTestType::TwoSampleEqualVar,
|
||||
3.0 => TTestType::TwoSampleUnequalVar,
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"type must be 1, 2, or 3".to_string(),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let (values1, values2): (Vec<f64>, Vec<f64>) = if matches!(test_type, TTestType::Paired) {
|
||||
values1_opts
|
||||
.into_iter()
|
||||
.zip(values2_opts)
|
||||
.filter_map(|(o1, o2)| match (o1, o2) {
|
||||
(Some(v1), Some(v2)) => Some((v1, v2)),
|
||||
_ => None, // skip if either is None
|
||||
})
|
||||
.unzip()
|
||||
} else {
|
||||
// keep only numeric entries, ignore non-numeric (Option::None)
|
||||
let v1: Vec<f64> = values1_opts.into_iter().flatten().collect();
|
||||
let v2: Vec<f64> = values2_opts.into_iter().flatten().collect();
|
||||
(v1, v2)
|
||||
};
|
||||
|
||||
let n1 = values1.len();
|
||||
let n2 = values2.len();
|
||||
|
||||
if n1 == 0 || n2 == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"T.TEST requires non-empty samples".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let (t_stat, df) = match test_type {
|
||||
TTestType::Paired => {
|
||||
if n1 != n2 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"For paired T.TEST, both samples must have the same length".to_string(),
|
||||
);
|
||||
}
|
||||
if n1 < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Paired T.TEST requires at least two pairs".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let mut diffs = Vec::with_capacity(n1);
|
||||
for i in 0..n1 {
|
||||
diffs.push(values1[i] - values2[i]);
|
||||
}
|
||||
|
||||
let nd = diffs.len();
|
||||
let md = mean(&diffs);
|
||||
let vd = sample_var(&diffs);
|
||||
if vd <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Zero variance in paired T.TEST".to_string(),
|
||||
);
|
||||
}
|
||||
let sd = vd.sqrt();
|
||||
let t_stat = md / (sd / (nd as f64).sqrt());
|
||||
let df = (nd - 1) as f64;
|
||||
(t_stat, df)
|
||||
}
|
||||
|
||||
// 2: two-sample, equal variance (homoscedastic)
|
||||
TTestType::TwoSampleEqualVar => {
|
||||
if n1 < 2 || n2 < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Two-sample T.TEST type 2 requires at least two values in each sample"
|
||||
.to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let m1 = mean(&values1);
|
||||
let m2 = mean(&values2);
|
||||
let v1 = sample_var(&values1);
|
||||
let v2 = sample_var(&values2);
|
||||
|
||||
let df_i = (n1 + n2 - 2) as i32;
|
||||
if df_i <= 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Degrees of freedom must be positive in T.TEST type 2".to_string(),
|
||||
);
|
||||
}
|
||||
let df = df_i as f64;
|
||||
|
||||
let sp2 = (((n1 - 1) as f64) * v1 + ((n2 - 1) as f64) * v2) / df; // pooled variance
|
||||
|
||||
if sp2 <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Zero pooled variance in T.TEST type 2".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let denom = (sp2 * (1.0 / (n1 as f64) + 1.0 / (n2 as f64))).sqrt();
|
||||
if denom == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Zero denominator in T.TEST type 2".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let t_stat = (m1 - m2) / denom;
|
||||
(t_stat, df)
|
||||
}
|
||||
|
||||
// two-sample, unequal variance (Welch)
|
||||
TTestType::TwoSampleUnequalVar => {
|
||||
if n1 < 2 || n2 < 2 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Two-sample T.TEST type 3 requires at least two values in each sample"
|
||||
.to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let m1 = mean(&values1);
|
||||
let m2 = mean(&values2);
|
||||
let v1 = sample_var(&values1);
|
||||
let v2 = sample_var(&values2);
|
||||
|
||||
let s1n = v1 / (n1 as f64);
|
||||
let s2n = v2 / (n2 as f64);
|
||||
let denom = (s1n + s2n).sqrt();
|
||||
if denom == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Zero denominator in T.TEST type 3".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let t_stat = (m1 - m2) / denom;
|
||||
|
||||
let num_df = (s1n + s2n).powi(2);
|
||||
let den_df = (s1n * s1n) / ((n1 - 1) as f64) + (s2n * s2n) / ((n2 - 1) as f64);
|
||||
if den_df == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Invalid degrees of freedom in T.TEST type 3".to_string(),
|
||||
);
|
||||
}
|
||||
let df = num_df / den_df;
|
||||
(t_stat, df)
|
||||
}
|
||||
};
|
||||
|
||||
if df <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Degrees of freedom must be positive in T.TEST".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let dist = match StudentsT::new(0.0, 1.0, df) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Invalid parameters for Student's t distribution".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let t_abs = t_stat.abs();
|
||||
let cdf = dist.cdf(t_abs);
|
||||
|
||||
let mut p = match tails {
|
||||
TTestTails::OneTailed => 1.0 - cdf,
|
||||
TTestTails::TwoTailed => 2.0 * (1.0 - cdf),
|
||||
};
|
||||
|
||||
// clamp tiny fp noise
|
||||
if p < 0.0 && p > -1e-15 {
|
||||
p = 0.0;
|
||||
}
|
||||
if p > 1.0 && p < 1.0 + 1e-15 {
|
||||
p = 1.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(p)
|
||||
}
|
||||
}
|
||||
518
base/src/functions/statistical/variance.rs
Normal file
518
base/src/functions/statistical/variance.rs
Normal file
@@ -0,0 +1,518 @@
|
||||
use crate::constants::{LAST_COLUMN, LAST_ROW};
|
||||
use crate::expressions::parser::ArrayNode;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
pub(crate) fn fn_var_p(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"VAR.P with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / n;
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_var_s(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"VAR.S requires at least two numeric values".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_vara(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..=row2 {
|
||||
for column in column1..=column2 {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::String(_) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
|
||||
}
|
||||
CalcResult::Boolean(value) => {
|
||||
let val = if value { 1.0 } else { 0.0 };
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, val);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now (A semantics to be added)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric for now (A semantics to be added)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now (A semantics to be added)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"VARA requires at least two numeric values".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / (n - 1.0);
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var)
|
||||
}
|
||||
|
||||
pub(crate) fn fn_varpa(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
if args.is_empty() {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let mut sum = 0.0;
|
||||
let mut sumsq = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
#[inline]
|
||||
fn accumulate(sum: &mut f64, sumsq: &mut f64, count: &mut u64, value: f64) {
|
||||
*sum += value;
|
||||
*sumsq += value * value;
|
||||
*count += 1;
|
||||
}
|
||||
|
||||
for arg in args {
|
||||
match self.evaluate_node_in_context(arg, cell) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::Range { left, right } => {
|
||||
if left.sheet != right.sheet {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Ranges are in different sheets".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let row1 = left.row;
|
||||
let mut row2 = right.row;
|
||||
let column1 = left.column;
|
||||
let mut column2 = right.column;
|
||||
|
||||
if row1 == 1 && row2 == LAST_ROW {
|
||||
row2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_row,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
if column1 == 1 && column2 == LAST_COLUMN {
|
||||
column2 = match self.workbook.worksheet(left.sheet) {
|
||||
Ok(s) => s.dimension().max_column,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::ERROR,
|
||||
cell,
|
||||
format!("Invalid worksheet index: '{}'", left.sheet),
|
||||
);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
for row in row1..row2 + 1 {
|
||||
for column in column1..(column2 + 1) {
|
||||
match self.evaluate_cell(CellReferenceIndex {
|
||||
sheet: left.sheet,
|
||||
row,
|
||||
column,
|
||||
}) {
|
||||
CalcResult::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
CalcResult::String(_) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, 0.0);
|
||||
}
|
||||
CalcResult::Boolean(value) => {
|
||||
let val = if value { 1.0 } else { 0.0 };
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, val);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
CalcResult::Array(array) => {
|
||||
for row in array {
|
||||
for value in row {
|
||||
match value {
|
||||
ArrayNode::Number(value) => {
|
||||
accumulate(&mut sum, &mut sumsq, &mut count, value);
|
||||
}
|
||||
ArrayNode::Error(error) => {
|
||||
return CalcResult::Error {
|
||||
error,
|
||||
origin: cell,
|
||||
message: "Error in array".to_string(),
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
// ignore non-numeric for now
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"VARPA with no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mut var = (sumsq - (sum * sum) / n) / n;
|
||||
|
||||
if var < 0.0 && var > -1e-12 {
|
||||
var = 0.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(var)
|
||||
}
|
||||
}
|
||||
71
base/src/functions/statistical/weibull.rs
Normal file
71
base/src/functions/statistical/weibull.rs
Normal file
@@ -0,0 +1,71 @@
|
||||
use statrs::distribution::{Continuous, ContinuousCDF, Weibull};
|
||||
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{
|
||||
calc_result::CalcResult, expressions::parser::Node, expressions::token::Error, model::Model,
|
||||
};
|
||||
|
||||
impl Model {
|
||||
// WEIBULL.DIST(x, alpha, beta, cumulative)
|
||||
pub(crate) fn fn_weibull_dist(
|
||||
&mut self,
|
||||
args: &[Node],
|
||||
cell: CellReferenceIndex,
|
||||
) -> CalcResult {
|
||||
if args.len() != 4 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let x = match self.get_number_no_bools(&args[0], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let alpha = match self.get_number_no_bools(&args[1], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let beta = match self.get_number_no_bools(&args[2], cell) {
|
||||
Ok(f) => f,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
let cumulative = match self.get_boolean(&args[3], cell) {
|
||||
Ok(b) => b,
|
||||
Err(e) => return e,
|
||||
};
|
||||
|
||||
if x < 0.0 || alpha <= 0.0 || beta <= 0.0 {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for WEIBULL.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
// statrs::Weibull: shape = k (alpha), scale = lambda (beta)
|
||||
let dist = match Weibull::new(alpha, beta) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid parameters for WEIBULL.DIST".to_string(),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let result = if cumulative { dist.cdf(x) } else { dist.pdf(x) };
|
||||
|
||||
if !result.is_finite() {
|
||||
return CalcResult::Error {
|
||||
error: Error::NUM,
|
||||
origin: cell,
|
||||
message: "Invalid result for WEIBULL.DIST".to_string(),
|
||||
};
|
||||
}
|
||||
|
||||
CalcResult::Number(result)
|
||||
}
|
||||
}
|
||||
171
base/src/functions/statistical/z_test.rs
Normal file
171
base/src/functions/statistical/z_test.rs
Normal file
@@ -0,0 +1,171 @@
|
||||
use statrs::distribution::{ContinuousCDF, Normal};
|
||||
|
||||
use crate::expressions::token::Error;
|
||||
use crate::expressions::types::CellReferenceIndex;
|
||||
use crate::{calc_result::CalcResult, expressions::parser::Node, model::Model};
|
||||
|
||||
impl Model {
|
||||
// Z.TEST(array, x, [sigma])
|
||||
pub(crate) fn fn_z_test(&mut self, args: &[Node], cell: CellReferenceIndex) -> CalcResult {
|
||||
// 2 or 3 arguments
|
||||
if args.len() < 2 || args.len() > 3 {
|
||||
return CalcResult::new_args_number_error(cell);
|
||||
}
|
||||
|
||||
let array_arg = self.evaluate_node_in_context(&args[0], cell);
|
||||
|
||||
// Flatten first argument into Vec<Option<f64>> (numeric / non-numeric)
|
||||
let values = match array_arg {
|
||||
CalcResult::Range { left, right } => match self.values_from_range(left, right) {
|
||||
Ok(v) => v,
|
||||
Err(error) => return error,
|
||||
},
|
||||
CalcResult::Array(array) => match self.values_from_array(array) {
|
||||
Ok(v) => v,
|
||||
Err(error) => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
format!("Error in array argument: {:?}", error),
|
||||
);
|
||||
}
|
||||
},
|
||||
CalcResult::Number(v) => vec![Some(v)],
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Z.TEST first argument must be a range or array".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Collect basic stats on numeric entries
|
||||
let mut sum = 0.0;
|
||||
let mut count: u64 = 0;
|
||||
|
||||
for x in values.iter().flatten() {
|
||||
sum += x;
|
||||
count += 1;
|
||||
}
|
||||
|
||||
// Excel: if array has no numeric values -> #N/A
|
||||
if count == 0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NA,
|
||||
cell,
|
||||
"Z.TEST array has no numeric data".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let n = count as f64;
|
||||
let mean = sum / n;
|
||||
|
||||
// x argument (hypothesized population mean)
|
||||
let x_value = match self.evaluate_node_in_context(&args[1], cell) {
|
||||
CalcResult::Number(v) => v,
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Z.TEST second argument (x) must be numeric".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
// Optional sigma
|
||||
let mut sigma: Option<f64> = None;
|
||||
if args.len() == 3 {
|
||||
match self.evaluate_node_in_context(&args[2], cell) {
|
||||
CalcResult::Number(v) => {
|
||||
if v == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Z.TEST sigma cannot be zero".to_string(),
|
||||
);
|
||||
}
|
||||
sigma = Some(v);
|
||||
}
|
||||
error @ CalcResult::Error { .. } => return error,
|
||||
_ => {
|
||||
return CalcResult::new_error(
|
||||
Error::VALUE,
|
||||
cell,
|
||||
"Z.TEST sigma (third argument) must be numeric".to_string(),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If sigma omitted, use sample standard deviation STDEV(array)
|
||||
let sigma_value = if let Some(s) = sigma {
|
||||
s
|
||||
} else {
|
||||
// Excel: if only one numeric value and sigma omitted -> #DIV/0!
|
||||
if count <= 1 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Z.TEST requires at least two values when sigma is omitted".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
// Compute sum of squared deviations
|
||||
let mut sumsq_dev = 0.0;
|
||||
for x in values.iter().flatten() {
|
||||
let d = x - mean;
|
||||
sumsq_dev += d * d;
|
||||
}
|
||||
|
||||
let var = sumsq_dev / (n - 1.0);
|
||||
if var <= 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Z.TEST standard deviation is zero".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
var.sqrt()
|
||||
};
|
||||
|
||||
// Compute z statistic: (mean - x) / (sigma / sqrt(n))
|
||||
let denom = sigma_value / n.sqrt();
|
||||
if denom == 0.0 {
|
||||
return CalcResult::new_error(
|
||||
Error::DIV,
|
||||
cell,
|
||||
"Z.TEST denominator is zero".to_string(),
|
||||
);
|
||||
}
|
||||
|
||||
let z = (mean - x_value) / denom;
|
||||
|
||||
// Standard normal CDF
|
||||
let dist = match Normal::new(0.0, 1.0) {
|
||||
Ok(d) => d,
|
||||
Err(_) => {
|
||||
return CalcResult::new_error(
|
||||
Error::NUM,
|
||||
cell,
|
||||
"Cannot create standard normal distribution in Z.TEST".to_string(),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
let mut p = 1.0 - dist.cdf(z);
|
||||
|
||||
// clamp tiny FP noise
|
||||
if p < 0.0 && p > -1e-15 {
|
||||
p = 0.0;
|
||||
}
|
||||
if p > 1.0 && p < 1.0 + 1e-15 {
|
||||
p = 1.0;
|
||||
}
|
||||
|
||||
CalcResult::Number(p)
|
||||
}
|
||||
}
|
||||
@@ -18,6 +18,7 @@ mod test_fn_concatenate;
|
||||
mod test_fn_count;
|
||||
mod test_fn_day;
|
||||
mod test_fn_exact;
|
||||
mod test_fn_fact;
|
||||
mod test_fn_financial;
|
||||
mod test_fn_formulatext;
|
||||
mod test_fn_if;
|
||||
@@ -55,12 +56,17 @@ mod test_yearfrac_basis;
|
||||
pub(crate) mod util;
|
||||
|
||||
mod engineering;
|
||||
mod statistical;
|
||||
mod test_fn_offset;
|
||||
mod test_number_format;
|
||||
|
||||
mod test_arrays;
|
||||
mod test_combin_combina;
|
||||
mod test_escape_quotes;
|
||||
mod test_even_odd;
|
||||
mod test_exp_sign;
|
||||
mod test_extend;
|
||||
mod test_fn_datevalue_timevalue;
|
||||
mod test_fn_fv;
|
||||
mod test_fn_round;
|
||||
mod test_fn_type;
|
||||
@@ -80,5 +86,6 @@ mod test_percentage;
|
||||
mod test_set_functions_error_handling;
|
||||
mod test_sheet_names;
|
||||
mod test_today;
|
||||
mod test_trigonometric_reciprocals;
|
||||
mod test_types;
|
||||
mod user_model;
|
||||
|
||||
22
base/src/test/statistical/mod.rs
Normal file
22
base/src/test/statistical/mod.rs
Normal file
@@ -0,0 +1,22 @@
|
||||
mod test_fn_avedev;
|
||||
mod test_fn_binom;
|
||||
mod test_fn_chisq;
|
||||
mod test_fn_chisq_test;
|
||||
mod test_fn_confidence;
|
||||
mod test_fn_covariance;
|
||||
mod test_fn_devsq;
|
||||
mod test_fn_expon_dist;
|
||||
mod test_fn_f;
|
||||
mod test_fn_fisher;
|
||||
mod test_fn_hyp_geom_dist;
|
||||
mod test_fn_log_norm;
|
||||
mod test_fn_norm_dist;
|
||||
mod test_fn_pearson;
|
||||
mod test_fn_phi;
|
||||
mod test_fn_poisson;
|
||||
mod test_fn_stdev;
|
||||
mod test_fn_t_dist;
|
||||
mod test_fn_t_test;
|
||||
mod test_fn_var;
|
||||
mod test_fn_weibull;
|
||||
mod test_fn_z_test;
|
||||
40
base/src/test/statistical/test_fn_avedev.rs
Normal file
40
base/src/test/statistical/test_fn_avedev.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn smoke_test() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
|
||||
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"5.174505793");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"5.589105048");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn numbers() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A2", "24");
|
||||
model._set("A3", "25");
|
||||
model._set("A4", "27");
|
||||
model._set("A5", "23");
|
||||
model._set("A6", "45");
|
||||
model._set("A7", "23.5");
|
||||
model._set("A8", "34");
|
||||
model._set("A9", "23");
|
||||
model._set("A10", "23");
|
||||
model._set("A11", "TRUE");
|
||||
model._set("A12", "'23");
|
||||
model._set("A13", "Text");
|
||||
model._set("A14", "FALSE");
|
||||
model._set("A15", "45");
|
||||
|
||||
model._set("B1", "=AVEDEV(A2:A15)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("B1"), *"7.25");
|
||||
}
|
||||
86
base/src/test/statistical/test_fn_binom.rs
Normal file
86
base/src/test/statistical/test_fn_binom.rs
Normal file
@@ -0,0 +1,86 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_binom_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=BINOM.DIST(6, 10, 0.5, TRUE)");
|
||||
model._set("A2", "=BINOM.DIST(6, 10, 0.5, FALSE)");
|
||||
model._set("A3", "=BINOM.DIST(6, 10, 0.5)"); // wrong args
|
||||
model._set("A4", "=BINOM.DIST(6, 10, 0.5, TRUE, FALSE)"); // too many args
|
||||
model.evaluate();
|
||||
|
||||
// P(X <= 6) for X ~ Bin(10, 0.5) = 0.828125
|
||||
assert_eq!(model._get_text("A1"), *"0.828125");
|
||||
|
||||
// P(X = 6) for X ~ Bin(10, 0.5) = 0.205078125
|
||||
assert_eq!(model._get_text("A2"), *"0.205078125");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_binom_dist_range_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=BINOM.DIST.RANGE(60, 0.75, 48)");
|
||||
model._set("A2", "=BINOM.DIST.RANGE(60, 0.75, 45, 50)");
|
||||
model._set("A3", "=BINOM.DIST.RANGE(60, 1.2, 45, 50)"); // p > 1 -> #NUM!
|
||||
model._set("A4", "=BINOM.DIST.RANGE(60, 0.75, 50, 45)"); // lower > upper -> #NUM!");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.083974967");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"0.523629793");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_binom_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=BINOM.INV(6, 0.5, 0.75)");
|
||||
model._set("A2", "=BINOM.INV(6, 0.5, -0.1)"); // alpha < 0 -> #NUM!
|
||||
model._set("A3", "=BINOM.INV(6, 1.2, 0.75)"); // p > 1 -> #NUM!
|
||||
model._set("A4", "=BINOM.INV(6, 0.5)"); // args error
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"4");
|
||||
assert_eq!(model._get_text("A2"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A3"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_negbinom_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: PMF (non-cumulative) and CDF (cumulative)
|
||||
model._set("A1", "=NEGBINOM.DIST(10, 5, 0.25, FALSE)");
|
||||
model._set("A2", "=NEGBINOM.DIST(10, 5, 0.25, TRUE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=NEGBINOM.DIST(10, 5, 0.25)");
|
||||
model._set("A4", "=NEGBINOM.DIST(10, 5, 0.25, TRUE, FALSE)");
|
||||
|
||||
// Domain errors:
|
||||
// p < 0 or p > 1 -> #NUM!
|
||||
model._set("A5", "=NEGBINOM.DIST(10, 5, 1.5, TRUE)");
|
||||
// number_f < 0 -> #NUM!
|
||||
model._set("A6", "=NEGBINOM.DIST(-1, 5, 0.25, TRUE)");
|
||||
// number_s < 1 -> #NUM!
|
||||
model._set("A7", "=NEGBINOM.DIST(10, 0, 0.25, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.05504866");
|
||||
assert_eq!(model._get_text("A2"), *"0.313514058");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
140
base/src/test/statistical/test_fn_chisq.rs
Normal file
140
base/src/test/statistical/test_fn_chisq.rs
Normal file
@@ -0,0 +1,140 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: CDF
|
||||
model._set("A1", "=CHISQ.DIST(0.5, 4, TRUE)");
|
||||
|
||||
// Valid: PDF
|
||||
model._set("A2", "=CHISQ.DIST(0.5, 4, FALSE)");
|
||||
|
||||
// Valid: CDF with numeric cumulative (1 -> TRUE)
|
||||
model._set("A3", "=CHISQ.DIST(0.5, 4, 1)");
|
||||
|
||||
// Wrong number of args -> #ERROR!
|
||||
model._set("A4", "=CHISQ.DIST(0.5, 4)");
|
||||
model._set("A5", "=CHISQ.DIST(0.5, 4, TRUE, FALSE)");
|
||||
|
||||
// Domain errors
|
||||
// x < 0 -> #NUM!
|
||||
model._set("A6", "=CHISQ.DIST(-1, 4, TRUE)");
|
||||
// deg_freedom < 1 -> #NUM!
|
||||
model._set("A7", "=CHISQ.DIST(0.5, 0, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// Values for df = 4
|
||||
// CDF(0.5) ≈ 0.026499021, PDF(0.5) ≈ 0.097350098
|
||||
assert_eq!(model._get_text("A1"), *"0.026499021");
|
||||
assert_eq!(model._get_text("A2"), *"0.097350098");
|
||||
assert_eq!(model._get_text("A3"), *"0.026499021");
|
||||
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_dist_rt_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid calls
|
||||
model._set("A1", "=CHISQ.DIST.RT(0.5, 4)");
|
||||
model._set("A2", "=CHISQ.DIST.RT(5, 4)");
|
||||
|
||||
// Too few / too many args -> #ERROR!
|
||||
model._set("A3", "=CHISQ.DIST.RT(0.5)");
|
||||
model._set("A4", "=CHISQ.DIST.RT(0.5, 4, 1)");
|
||||
|
||||
// Domain errors
|
||||
// x < 0 -> #NUM!
|
||||
model._set("A5", "=CHISQ.DIST.RT(-1, 4)");
|
||||
// deg_freedom < 1 -> #NUM!
|
||||
model._set("A6", "=CHISQ.DIST.RT(0.5, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// For df = 4:
|
||||
// right tail at 0.5 ≈ 0.973500979
|
||||
// right tail at 5.0 ≈ 0.287297495
|
||||
assert_eq!(model._get_text("A1"), *"0.973500979");
|
||||
assert_eq!(model._get_text("A2"), *"0.287297495");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid calls
|
||||
model._set("A1", "=CHISQ.INV(0.95, 4)");
|
||||
model._set("A2", "=CHISQ.INV(0.1, 10)");
|
||||
|
||||
// Wrong number of args -> #ERROR!
|
||||
model._set("A3", "=CHISQ.INV(0.95)");
|
||||
model._set("A4", "=CHISQ.INV(0.95, 4, 1)");
|
||||
|
||||
// Domain errors
|
||||
// probability < 0 or > 1 -> #NUM!
|
||||
model._set("A5", "=CHISQ.INV(-0.1, 4)");
|
||||
model._set("A6", "=CHISQ.INV(1.1, 4)");
|
||||
// deg_freedom < 1 -> #NUM!
|
||||
model._set("A7", "=CHISQ.INV(0.5, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// Standard critical values:
|
||||
// CHISQ.INV(0.95, 4) ≈ 9.487729037
|
||||
// CHISQ.INV(0.1, 10) ≈ 4.865182052
|
||||
assert_eq!(model._get_text("A1"), *"9.487729037");
|
||||
assert_eq!(model._get_text("A2"), *"4.865182052");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_inv_rt_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid calls
|
||||
model._set("A1", "=CHISQ.INV.RT(0.05, 4)");
|
||||
model._set("A2", "=CHISQ.INV.RT(0.9, 10)");
|
||||
|
||||
// Wrong number of args -> #ERROR!
|
||||
model._set("A3", "=CHISQ.INV.RT(0.05)");
|
||||
model._set("A4", "=CHISQ.INV.RT(0.05, 4, 1)");
|
||||
|
||||
// Domain errors
|
||||
// probability < 0 or > 1 -> #NUM!
|
||||
model._set("A5", "=CHISQ.INV.RT(-0.1, 4)");
|
||||
model._set("A6", "=CHISQ.INV.RT(1.1, 4)");
|
||||
// deg_freedom < 1 -> #NUM!
|
||||
model._set("A7", "=CHISQ.INV.RT(0.5, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// For chi-square:
|
||||
// CHISQ.INV.RT(0.05, 4) = CHISQ.INV(0.95, 4) ≈ 9.487729037
|
||||
// CHISQ.INV.RT(0.9, 10) = CHISQ.INV(0.1, 10) ≈ 4.865182052
|
||||
assert_eq!(model._get_text("A1"), *"9.487729037");
|
||||
assert_eq!(model._get_text("A2"), *"4.865182052");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
127
base/src/test/statistical/test_fn_chisq_test.rs
Normal file
127
base/src/test/statistical/test_fn_chisq_test.rs
Normal file
@@ -0,0 +1,127 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_test_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "48");
|
||||
model._set("A3", "32");
|
||||
model._set("A4", "12");
|
||||
model._set("A5", "1");
|
||||
model._set("A6", "'13");
|
||||
model._set("A7", "TRUE");
|
||||
model._set("A8", "1");
|
||||
model._set("A9", "13");
|
||||
model._set("A10", "15");
|
||||
|
||||
model._set("B2", "55");
|
||||
model._set("B3", "34");
|
||||
model._set("B4", "13");
|
||||
model._set("B5", "blah");
|
||||
model._set("B6", "13");
|
||||
model._set("B7", "1");
|
||||
model._set("B8", "TRUE");
|
||||
model._set("B9", "'14");
|
||||
model._set("B10", "16");
|
||||
|
||||
model._set("C1", "=CHISQ.TEST(A2:A10, B2:B10)");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("C1"), *"0.997129538");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn arrays() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "TRUE");
|
||||
model._set("A3", "4");
|
||||
model._set("A4", "'3");
|
||||
model._set("B2", "2");
|
||||
model._set("B3", "2");
|
||||
model._set("B4", "2");
|
||||
model._set("C1", "=CHISQ.TEST(A2:A4, B2:B4)");
|
||||
|
||||
model._set("G5", "=CHISQ.TEST({TRUE,4,\"3\"}, {2,2,2})");
|
||||
|
||||
// 1D arrays with different shapes
|
||||
model._set("G6", "=CHISQ.TEST({1,2,3}, {3;3;4})");
|
||||
|
||||
// 2D array
|
||||
model._set("G7", "=CHISQ.TEST({1,2;3,4},{2,3;2,2})");
|
||||
|
||||
// 1D arrays with same shape
|
||||
model._set("G8", "=CHISQ.TEST({1,2,3,4}, {2,3,4,5})");
|
||||
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("C1"), *"0.367879441");
|
||||
assert_eq!(model._get_text("G5"), *"0.367879441");
|
||||
|
||||
assert_eq!(model._get_text("G6"), *"0.383531573");
|
||||
|
||||
assert_eq!(model._get_text("G7"), *"0.067889155");
|
||||
|
||||
assert_eq!(model._get_text("G8"), *"0.733094495");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn more_arrays() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("V20", "2");
|
||||
model._set("V21", "4");
|
||||
model._set("W20", "3");
|
||||
model._set("W21", "5");
|
||||
model._set("C1", "=CHISQ.TEST({1,2;3,4},V20:W21)");
|
||||
model._set("C2", "=CHISQ.TEST({1,2;3,4}, {2,3;4,5})");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("C1"), *"0.257280177");
|
||||
assert_eq!(model._get_text("C2"), *"0.257280177");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn array_ranges() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "TRUE");
|
||||
model._set("A3", "4");
|
||||
model._set("A4", "'3");
|
||||
model._set("B2", "2");
|
||||
model._set("B3", "2");
|
||||
model._set("B4", "2");
|
||||
model._set("C1", "=CHISQ.TEST(A2:A4, {2;2;2})");
|
||||
|
||||
model._set("G5", "=CHISQ.TEST({TRUE;4;\"3\"}, B2:B4)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("C1"), *"0.367879441");
|
||||
assert_eq!(model._get_text("G5"), *"0.367879441");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn array_2d_ranges() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "2");
|
||||
model._set("B2", "3");
|
||||
model._set("C2", "4");
|
||||
model._set("A3", "5");
|
||||
model._set("B3", "6");
|
||||
model._set("C3", "7");
|
||||
model._set("G1", "=CHISQ.TEST({1,2,3;4,2,6}, A2:C3)");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("G1"), *"0.129195493");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ranges_1d() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "1");
|
||||
model._set("A3", "2");
|
||||
model._set("A4", "3");
|
||||
model._set("B2", "4");
|
||||
model._set("C2", "5");
|
||||
model._set("D2", "6");
|
||||
model._set("G1", "=CHISQ.TEST(A2:A4, B2:D2)");
|
||||
model._set("G2", "=CHISQ.TEST(B2:D2, A2:A4)");
|
||||
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("G1"), *"0.062349477");
|
||||
assert_eq!(model._get_text("G2"), *"0.000261259");
|
||||
}
|
||||
51
base/src/test/statistical/test_fn_confidence.rs
Normal file
51
base/src/test/statistical/test_fn_confidence.rs
Normal file
@@ -0,0 +1,51 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_confidence_norm_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A1", "=CONFIDENCE.NORM(0.05, 2.5, 50)");
|
||||
|
||||
// Some edge/error cases
|
||||
model._set("A2", "=CONFIDENCE.NORM(0, 2.5, 50)"); // alpha <= 0 -> #NUM!
|
||||
model._set("A3", "=CONFIDENCE.NORM(1, 2.5, 50)"); // alpha >= 1 -> #NUM!
|
||||
model._set("A4", "=CONFIDENCE.NORM(0.05, -1, 50)"); // std_dev <=0 -> #NUM!
|
||||
model._set("A5", "=CONFIDENCE.NORM(0.05, 2.5, 1)");
|
||||
model._set("A6", "=CONFIDENCE.NORM(0.05, 2.5, 0.99)"); // size < 1 -> #NUM!
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.692951912");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A3"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"4.899909961");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_confidence_t_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A1", "=CONFIDENCE.T(0.05, 50000, 100)");
|
||||
|
||||
// Some edge/error cases
|
||||
model._set("A2", "=CONFIDENCE.T(0, 50000, 100)"); // alpha <= 0 -> #NUM!
|
||||
model._set("A3", "=CONFIDENCE.T(1, 50000, 100)"); // alpha >= 1 -> #NUM!
|
||||
model._set("A4", "=CONFIDENCE.T(0.05, -1, 100)");
|
||||
model._set("A5", "=CONFIDENCE.T(0.05, 50000, 1)");
|
||||
model._set("A6", "=CONFIDENCE.T(0.05, 50000, 1.7)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"9921.08475793");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A3"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#DIV/0!");
|
||||
assert_eq!(model._get_text("A6"), *"#DIV/0!");
|
||||
}
|
||||
57
base/src/test/statistical/test_fn_covariance.rs
Normal file
57
base/src/test/statistical/test_fn_covariance.rs
Normal file
@@ -0,0 +1,57 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_covariance_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "3");
|
||||
model._set("A2", "9");
|
||||
model._set("A3", "2");
|
||||
model._set("A4", "7");
|
||||
model._set("A5", "4");
|
||||
model._set("A6", "12");
|
||||
|
||||
model._set("B1", "5");
|
||||
model._set("B2", "15");
|
||||
model._set("B3", "6");
|
||||
model._set("B4", "17");
|
||||
model._set("B5", "8");
|
||||
model._set("B6", "20");
|
||||
|
||||
model._set("C1", "=COVARIANCE.P(A1:A6, B1:B6)");
|
||||
model._set("C2", "=COVARIANCE.S(A1:A6, B1:B6)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("C1"), *"19.194444444");
|
||||
assert_eq!(model._get_text("C2"), *"23.033333333");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn arrays_mixed() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A2", "2");
|
||||
model._set("A3", "4");
|
||||
model._set("A4", "6");
|
||||
model._set("A5", "8");
|
||||
|
||||
model._set("B2", "1");
|
||||
model._set("B3", "3");
|
||||
model._set("B4", "5");
|
||||
model._set("B5", "7");
|
||||
|
||||
model._set("C1", "=COVARIANCE.P(A2:A5, {1,3,5,7})");
|
||||
model._set("C2", "=COVARIANCE.S(A2:A5, {1,3,5,7})");
|
||||
model._set("C3", "=COVARIANCE.P(A2:A5, B2:B5)");
|
||||
model._set("C4", "=COVARIANCE.S(A2:A5, B2:B5)");
|
||||
model._set("C5", "=COVARIANCE.P({2,4,6,8}, B2:B5)");
|
||||
model._set("C6", "=COVARIANCE.S({2,4,6,8}, B2:B5)");
|
||||
model._set("C7", "=COVARIANCE.P({2,4,6,8}, {1,3,5,7})");
|
||||
model._set("C8", "=COVARIANCE.S({2,4,6,8}, {1,3,5,7})");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("C1"), *"5");
|
||||
assert_eq!(model._get_text("C2"), *"6.666666667");
|
||||
}
|
||||
50
base/src/test/statistical/test_fn_devsq.rs
Normal file
50
base/src/test/statistical/test_fn_devsq.rs
Normal file
@@ -0,0 +1,50 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn arguments_smoke_test() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=DEVSQ()");
|
||||
model._set("A2", "=DEVSQ(1, 2, 3)");
|
||||
model._set("A3", "=DEVSQ(1, )");
|
||||
model._set("A4", "=DEVSQ(1, , 3)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A2"), *"2");
|
||||
assert_eq!(model._get_text("A3"), *"0");
|
||||
assert_eq!(model._get_text("A4"), *"2");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ranges() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=DEVSQ(A2:A8)");
|
||||
model._set("A2", "4");
|
||||
model._set("A3", "5");
|
||||
model._set("A4", "8");
|
||||
model._set("A5", "7");
|
||||
model._set("A6", "11");
|
||||
model._set("A7", "4");
|
||||
model._set("A8", "3");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("A1"), *"48");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn arrays() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=DEVSQ({1, 2, 3})");
|
||||
model._set("A2", "=DEVSQ({1; 2; 3})");
|
||||
model._set("A3", "=DEVSQ({1, 2; 3, 4})");
|
||||
model._set("A4", "=DEVSQ({1, 2; 3, 4; 5, 6})");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"2");
|
||||
assert_eq!(model._get_text("A2"), *"2");
|
||||
assert_eq!(model._get_text("A3"), *"5");
|
||||
assert_eq!(model._get_text("A4"), *"17.5");
|
||||
}
|
||||
32
base/src/test/statistical/test_fn_expon_dist.rs
Normal file
32
base/src/test/statistical/test_fn_expon_dist.rs
Normal file
@@ -0,0 +1,32 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_expon_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// λ = 1, x = 0.5
|
||||
// CDF = 1 - e^-0.5 ≈ 0.393469340
|
||||
// PDF = e^-0.5 ≈ 0.606530660
|
||||
model._set("A1", "=EXPON.DIST(0.5, 1, TRUE)");
|
||||
model._set("A2", "=EXPON.DIST(0.5, 1, FALSE)");
|
||||
|
||||
// Wrong number of args
|
||||
model._set("A3", "=EXPON.DIST(0.5, 1)");
|
||||
model._set("A4", "=EXPON.DIST(0.5, 1, TRUE, FALSE)");
|
||||
|
||||
// Domain errors
|
||||
model._set("A5", "=EXPON.DIST(-1, 1, TRUE)"); // x < 0
|
||||
model._set("A6", "=EXPON.DIST(0.5, 0, TRUE)"); // lambda <= 0
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.39346934");
|
||||
assert_eq!(model._get_text("A2"), *"0.60653066");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
75
base/src/test/statistical/test_fn_f.rs
Normal file
75
base/src/test/statistical/test_fn_f.rs
Normal file
@@ -0,0 +1,75 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_f_dist_sanity() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=F.DIST(15, 6, 4, TRUE)");
|
||||
model._set("A2", "=F.DIST(15, 6, 4, FALSE)");
|
||||
model._set("A3", "=F.DIST(15, 6, 4)");
|
||||
model._set("A4", "=F.DIST(15, 6, 4, TRUE, FALSE)");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("A1"), *"0.989741952");
|
||||
assert_eq!(model._get_text("A2"), *"0.001271447");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_f_dist_rt_sanity() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid call
|
||||
model._set("A1", "=F.DIST.RT(15, 6, 4)");
|
||||
// Too few args
|
||||
model._set("A2", "=F.DIST.RT(15, 6)");
|
||||
// Too many args
|
||||
model._set("A3", "=F.DIST.RT(15, 6, 4, 1)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.010258048");
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_f_inv_sanity() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid call: left-tail inverse
|
||||
model._set("A1", "=F.INV(0.9897419523940, 6, 4)");
|
||||
|
||||
// Too many args
|
||||
model._set("A2", "=F.INV(0.5, 6, 4, 2)");
|
||||
|
||||
// Too few args
|
||||
model._set("A3", "=F.INV(0.5, 6)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"15");
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_f_inv_rt_sanity() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid call: left-tail inverse
|
||||
model._set("A1", "=F.INV.RT(0.0102580476059808, 6, 4)");
|
||||
|
||||
// Too many args
|
||||
model._set("A2", "=F.INV.RT(0.5, 6, 4, 2)");
|
||||
|
||||
// Too few args
|
||||
model._set("A3", "=F.INV.RT(0.5, 6)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"15");
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
}
|
||||
53
base/src/test/statistical/test_fn_fisher.rs
Normal file
53
base/src/test/statistical/test_fn_fisher.rs
Normal file
@@ -0,0 +1,53 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
#[test]
|
||||
fn test_fn_fisher_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid inputs
|
||||
model._set("A1", "=FISHER(0.1)");
|
||||
model._set("A2", "=FISHER(-0.5)");
|
||||
model._set("A3", "=FISHER(0.8)");
|
||||
|
||||
// Domain errors: x <= -1 or x >= 1 -> #NUM!
|
||||
model._set("A4", "=FISHER(1)");
|
||||
model._set("A5", "=FISHER(-1)");
|
||||
model._set("A6", "=FISHER(2)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A7", "=FISHER(0.1, 2)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.100335348");
|
||||
assert_eq!(model._get_text("A2"), *"-0.549306144");
|
||||
assert_eq!(model._get_text("A3"), *"1.098612289");
|
||||
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
|
||||
assert_eq!(model._get_text("A7"), *"#ERROR!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_fisher_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid inputs
|
||||
model._set("A1", "=FISHERINV(-1.5)");
|
||||
model._set("A2", "=FISHERINV(0.5)");
|
||||
model._set("A3", "=FISHERINV(2)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A4", "=FISHERINV(0.5, 1)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"-0.905148254");
|
||||
assert_eq!(model._get_text("A2"), *"0.462117157");
|
||||
assert_eq!(model._get_text("A3"), *"0.96402758");
|
||||
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
}
|
||||
42
base/src/test/statistical/test_fn_hyp_geom_dist.rs
Normal file
42
base/src/test/statistical/test_fn_hyp_geom_dist.rs
Normal file
@@ -0,0 +1,42 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_hyp_geom_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: PDF (non-cumulative)
|
||||
model._set("A1", "=HYPGEOM.DIST(1, 4, 12, 20, FALSE)");
|
||||
|
||||
// Valid: CDF (cumulative)
|
||||
model._set("A2", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=HYPGEOM.DIST(1, 4, 12, 20)");
|
||||
model._set("A4", "=HYPGEOM.DIST(1, 4, 12, 20, TRUE, FALSE)");
|
||||
|
||||
// Domain errors:
|
||||
// sample_s > number_sample -> #NUM!
|
||||
model._set("A5", "=HYPGEOM.DIST(5, 4, 12, 20, TRUE)");
|
||||
|
||||
// population_s > number_pop -> #NUM!
|
||||
model._set("A6", "=HYPGEOM.DIST(1, 4, 25, 20, TRUE)");
|
||||
|
||||
// number_sample > number_pop -> #NUM!
|
||||
model._set("A7", "=HYPGEOM.DIST(1, 25, 12, 20, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// PDF: P(X = 1)
|
||||
assert_eq!(model._get_text("A1"), *"0.13869969");
|
||||
|
||||
// CDF: P(X <= 1)
|
||||
assert_eq!(model._get_text("A2"), *"0.153147575");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
61
base/src/test/statistical/test_fn_log_norm.rs
Normal file
61
base/src/test/statistical/test_fn_log_norm.rs
Normal file
@@ -0,0 +1,61 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_log_norm_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: CDF and PDF
|
||||
model._set("A1", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE)");
|
||||
model._set("A2", "=LOGNORM.DIST(4, 3.5, 1.2, FALSE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=LOGNORM.DIST(4, 3.5, 1.2)");
|
||||
model._set("A4", "=LOGNORM.DIST(4, 3.5, 1.2, TRUE, FALSE)");
|
||||
|
||||
// Domain errors:
|
||||
// x <= 0 -> #NUM!
|
||||
model._set("A5", "=LOGNORM.DIST(0, 3.5, 1.2, TRUE)");
|
||||
// std_dev <= 0 -> #NUM!
|
||||
model._set("A6", "=LOGNORM.DIST(4, 3.5, 0, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.039083556");
|
||||
assert_eq!(model._get_text("A2"), *"0.017617597");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_log_norm_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid call
|
||||
model._set("A1", "=LOGNORM.INV(0.5, 3.5, 1.2)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A2", "=LOGNORM.INV(0.5, 3.5)");
|
||||
model._set("A3", "=LOGNORM.INV(0.5, 3.5, 1.2, 0)");
|
||||
|
||||
// Domain errors:
|
||||
// probability <= 0 or >= 1 -> #NUM!
|
||||
model._set("A4", "=LOGNORM.INV(0, 3.5, 1.2)");
|
||||
model._set("A5", "=LOGNORM.INV(1, 3.5, 1.2)");
|
||||
// std_dev <= 0 -> #NUM!
|
||||
model._set("A6", "=LOGNORM.INV(0.5, 3.5, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"33.115451959");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
119
base/src/test/statistical/test_fn_norm_dist.rs
Normal file
119
base/src/test/statistical/test_fn_norm_dist.rs
Normal file
@@ -0,0 +1,119 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_norm_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: standard normal as a special case
|
||||
model._set("A1", "=NORM.DIST(1, 0, 1, TRUE)");
|
||||
model._set("A2", "=NORM.DIST(1, 0, 1, FALSE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=NORM.DIST(1, 0, 1)");
|
||||
model._set("A4", "=NORM.DIST(1, 0, 1, TRUE, FALSE)");
|
||||
|
||||
// Domain errors: standard_dev <= 0 -> #NUM!
|
||||
model._set("A5", "=NORM.DIST(1, 0, 0, TRUE)");
|
||||
model._set("A6", "=NORM.DIST(1, 0, -1, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.841344746");
|
||||
assert_eq!(model._get_text("A2"), *"0.241970725");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_norm_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: median of standard normal
|
||||
model._set("A1", "=NORM.INV(0.5, 0, 1)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A2", "=NORM.INV(0.5, 0)");
|
||||
model._set("A3", "=NORM.INV(0.5, 0, 1, 0)");
|
||||
|
||||
// Domain errors:
|
||||
// probability <= 0 or >= 1 -> #NUM!
|
||||
model._set("A4", "=NORM.INV(0, 0, 1)");
|
||||
model._set("A5", "=NORM.INV(1, 0, 1)");
|
||||
// standard_dev <= 0 -> #NUM!
|
||||
model._set("A6", "=NORM.INV(0.5, 0, 0)");
|
||||
|
||||
model._set("A7", "=NORM.INV(0.7, 0.2, 1)");
|
||||
model._set("A8", "=NORM.INV(0.7, 0.2, 5)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"0.724400513");
|
||||
assert_eq!(model._get_text("A8"), *"2.822002564");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_norm_s_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: CDF and PDF at z = 0
|
||||
model._set("A1", "=NORM.S.DIST(0, TRUE)");
|
||||
model._set("A2", "=NORM.S.DIST(0, FALSE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=NORM.S.DIST(0)");
|
||||
model._set("A4", "=NORM.S.DIST(0, TRUE, FALSE)");
|
||||
|
||||
model._set("A5", "=NORM.S.DIST(0.2, FALSE)");
|
||||
model._set("A6", "=NORM.S.DIST(2.2, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.5");
|
||||
assert_eq!(model._get_text("A2"), *"0.39894228");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
|
||||
assert_eq!(model._get_text("A5"), *"0.391042694");
|
||||
assert_eq!(model._get_text("A6"), *"0.986096552");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_norm_s_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: symmetric points
|
||||
model._set("A1", "=NORM.S.INV(0.5)");
|
||||
model._set("A2", "=NORM.S.INV(0.841344746)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=NORM.S.INV()");
|
||||
model._set("A4", "=NORM.S.INV(0.5, 0)");
|
||||
|
||||
// Domain errors: probability <= 0 or >= 1 -> #NUM!
|
||||
model._set("A5", "=NORM.S.INV(0)");
|
||||
model._set("A6", "=NORM.S.INV(1)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0");
|
||||
// Approximately 1
|
||||
assert_eq!(model._get_text("A2"), *"1");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
31
base/src/test/statistical/test_fn_pearson.rs
Normal file
31
base/src/test/statistical/test_fn_pearson.rs
Normal file
@@ -0,0 +1,31 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_chisq_test_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "48");
|
||||
model._set("A3", "32");
|
||||
model._set("A4", "12");
|
||||
model._set("A5", "1");
|
||||
model._set("A6", "'13");
|
||||
model._set("A7", "TRUE");
|
||||
model._set("A8", "1");
|
||||
model._set("A9", "13");
|
||||
model._set("A10", "15");
|
||||
|
||||
model._set("B2", "55");
|
||||
model._set("B3", "34");
|
||||
model._set("B4", "13");
|
||||
model._set("B5", "blah");
|
||||
model._set("B6", "13");
|
||||
model._set("B7", "1");
|
||||
model._set("B8", "TRUE");
|
||||
model._set("B9", "'14");
|
||||
model._set("B10", "16");
|
||||
|
||||
model._set("C1", "=PEARSON(A2:A10, B2:B10)");
|
||||
model.evaluate();
|
||||
assert_eq!(model._get_text("C1"), *"0.998381439");
|
||||
}
|
||||
26
base/src/test/statistical/test_fn_phi.rs
Normal file
26
base/src/test/statistical/test_fn_phi.rs
Normal file
@@ -0,0 +1,26 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_phi_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A1", "=PHI(0)");
|
||||
model._set("A2", "=PHI(1)");
|
||||
model._set("A3", "=PHI(-1)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A4", "=PHI()");
|
||||
model._set("A5", "=PHI(0, 1)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// Standard values
|
||||
assert_eq!(model._get_text("A1"), *"0.39894228");
|
||||
assert_eq!(model._get_text("A2"), *"0.241970725");
|
||||
assert_eq!(model._get_text("A3"), *"0.241970725");
|
||||
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#ERROR!");
|
||||
}
|
||||
41
base/src/test/statistical/test_fn_poisson.rs
Normal file
41
base/src/test/statistical/test_fn_poisson.rs
Normal file
@@ -0,0 +1,41 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_poisson_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// λ = 2, x = 3
|
||||
// P(X = 3) ≈ 0.180447045
|
||||
// P(X <= 3) ≈ 0.857123461
|
||||
model._set("A1", "=POISSON.DIST(3, 2, FALSE)");
|
||||
model._set("A2", "=POISSON.DIST(3, 2, TRUE)");
|
||||
|
||||
// Wrong arg count
|
||||
model._set("A3", "=POISSON.DIST(3, 2)");
|
||||
model._set("A4", "=POISSON.DIST(3, 2, TRUE, FALSE)");
|
||||
|
||||
// Domain errors
|
||||
model._set("A5", "=POISSON.DIST(-1, 2, TRUE)"); // x < 0
|
||||
model._set("A6", "=POISSON.DIST(3, -2, TRUE)"); // mean < 0
|
||||
|
||||
// λ = 0 special cases
|
||||
model._set("A7", "=POISSON.DIST(0, 0, FALSE)"); // 1
|
||||
model._set("A8", "=POISSON.DIST(1, 0, FALSE)"); // 0
|
||||
model._set("A9", "=POISSON.DIST(5, 0, TRUE)"); // 1
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.180447044");
|
||||
assert_eq!(model._get_text("A2"), *"0.85712346");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
|
||||
assert_eq!(model._get_text("A7"), *"1");
|
||||
assert_eq!(model._get_text("A8"), *"0");
|
||||
assert_eq!(model._get_text("A9"), *"1");
|
||||
}
|
||||
46
base/src/test/statistical/test_fn_stdev.rs
Normal file
46
base/src/test/statistical/test_fn_stdev.rs
Normal file
@@ -0,0 +1,46 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn smoke_test() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
|
||||
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"5.174505793");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"5.589105048");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn numbers() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A2", "24");
|
||||
model._set("A3", "25");
|
||||
model._set("A4", "27");
|
||||
model._set("A5", "23");
|
||||
model._set("A6", "45");
|
||||
model._set("A7", "23.5");
|
||||
model._set("A8", "34");
|
||||
model._set("A9", "23");
|
||||
model._set("A10", "23");
|
||||
model._set("A11", "TRUE");
|
||||
model._set("A12", "'23");
|
||||
model._set("A13", "Text");
|
||||
model._set("A14", "FALSE");
|
||||
model._set("A15", "45");
|
||||
|
||||
model._set("B1", "=STDEV.P(A2:A15)");
|
||||
model._set("B2", "=STDEV.S(A2:A15)");
|
||||
model._set("B3", "=STDEVA(A2:A15)");
|
||||
model._set("B4", "=STDEVPA(A2:A15)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("B1"), *"8.483071378");
|
||||
assert_eq!(model._get_text("B2"), *"8.941942369");
|
||||
assert_eq!(model._get_text("B3"), *"15.499955689");
|
||||
assert_eq!(model._get_text("B4"), *"14.936131032");
|
||||
}
|
||||
160
base/src/test/statistical/test_fn_t_dist.rs
Normal file
160
base/src/test/statistical/test_fn_t_dist.rs
Normal file
@@ -0,0 +1,160 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_t_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: cumulative (left-tail CDF)
|
||||
model._set("A1", "=T.DIST(2, 10, TRUE)");
|
||||
// Valid: probability density function (PDF)
|
||||
model._set("B1", "=T.DIST(2, 10, FALSE)");
|
||||
|
||||
// Wrong number of arguments
|
||||
model._set("A2", "=T.DIST(2, 10)");
|
||||
model._set("A3", "=T.DIST(2, 10, TRUE, FALSE)");
|
||||
|
||||
// Domain error: df < 1 -> #NUM!
|
||||
model._set("A4", "=T.DIST(2, 0, TRUE)");
|
||||
model._set("A5", "=T.DIST(2, -1, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.963305983");
|
||||
assert_eq!(model._get_text("B1"), *"0.061145766");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_t_dist_rt_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: right tail probability
|
||||
model._set("A1", "=T.DIST.RT(2, 10)");
|
||||
|
||||
// Wrong number of arguments
|
||||
model._set("A2", "=T.DIST.RT(2)");
|
||||
model._set("A3", "=T.DIST.RT(2, 10, TRUE)");
|
||||
|
||||
// Domain error: df < 1
|
||||
model._set("A4", "=T.DIST.RT(2, 0)");
|
||||
model._set("A5", "=T.DIST.RT(2, -1)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.036694017");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_t_dist_2t_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: two-tailed probability
|
||||
model._set("A1", "=T.DIST.2T(2, 10)");
|
||||
|
||||
// In the limit case of x = 0, the two-tailed probability is 1.0
|
||||
model._set("A4", "=T.DIST.2T(0, 10)");
|
||||
|
||||
// Wrong number of arguments
|
||||
model._set("A2", "=T.DIST.2T(2)");
|
||||
model._set("A3", "=T.DIST.2T(2, 10, TRUE)");
|
||||
|
||||
// Domain errors:
|
||||
// x < 0 -> #NUM!
|
||||
model._set("A5", "=T.DIST.2T(-0.001, 10)");
|
||||
// df < 1 -> #NUM!
|
||||
model._set("A6", "=T.DIST.2T(2, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"0.073388035");
|
||||
assert_eq!(model._get_text("A4"), *"1");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_t_inv_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: upper and lower tail
|
||||
model._set("A1", "=T.INV(0.95, 10)");
|
||||
model._set("A2", "=T.INV(0.05, 10)");
|
||||
// limit case:
|
||||
model._set("B2", "=T.INV(0.95, 1)");
|
||||
|
||||
// Wrong number of arguments
|
||||
model._set("A3", "=T.INV(0.95)");
|
||||
model._set("A4", "=T.INV(0.95, 10, 1)");
|
||||
|
||||
// Domain errors:
|
||||
// p <= 0 or >= 1
|
||||
model._set("A5", "=T.INV(0, 10)");
|
||||
model._set("A6", "=T.INV(1, 10)");
|
||||
// df < 1
|
||||
model._set("A7", "=T.INV(0.95, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"1.812461123");
|
||||
assert_eq!(model._get_text("A2"), *"-1.812461123");
|
||||
assert_eq!(model._get_text("B2"), *"6.313751515");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fn_t_inv_2t_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: two-tailed critical values
|
||||
model._set("A1", "=T.INV.2T(0.1, 10)");
|
||||
model._set("A2", "=T.INV.2T(0.05, 10)");
|
||||
|
||||
// p = 1 should give t = 0 (both tails outside are 1.0, so cut at the mean)
|
||||
model._set("A3", "=T.INV.2T(1, 10)");
|
||||
|
||||
model._set("A7", "=T.INV.2T(1.5, 10)");
|
||||
|
||||
// Wrong number of arguments
|
||||
model._set("A4", "=T.INV.2T(0.1)");
|
||||
model._set("A5", "=T.INV.2T(0.1, 10, 1)");
|
||||
|
||||
// Domain errors:
|
||||
// p <= 0 or p > 1
|
||||
model._set("A6", "=T.INV.2T(0, 10)");
|
||||
// df < 1
|
||||
model._set("A8", "=T.INV.2T(0.1, 0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"1.812461123");
|
||||
assert_eq!(model._get_text("A2"), *"2.228138852");
|
||||
assert_eq!(model._get_text("A3"), *"0");
|
||||
|
||||
// NB: Excel returns -0.699812061 for T.INV.2T(1.5, 10)
|
||||
// which seems inconsistent with its documented behavior
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A8"), *"#NUM!");
|
||||
}
|
||||
41
base/src/test/statistical/test_fn_t_test.rs
Normal file
41
base/src/test/statistical/test_fn_t_test.rs
Normal file
@@ -0,0 +1,41 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
use crate::test::util::new_empty_model;
|
||||
#[test]
|
||||
fn test_fn_t_test_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "3");
|
||||
model._set("A3", "4");
|
||||
model._set("A4", "5");
|
||||
model._set("A5", "6");
|
||||
model._set("A6", "10");
|
||||
model._set("A7", "3");
|
||||
model._set("A8", "2");
|
||||
model._set("A9", "4");
|
||||
model._set("A10", "7");
|
||||
|
||||
model._set("B2", "6");
|
||||
model._set("B3", "19");
|
||||
model._set("B4", "3");
|
||||
model._set("B5", "2");
|
||||
model._set("B6", "13");
|
||||
model._set("B7", "4");
|
||||
model._set("B8", "5");
|
||||
model._set("B9", "17");
|
||||
model._set("B10", "3");
|
||||
|
||||
model._set("C1", "=T.TEST(A2:A10, B2:B10, 1, 1)");
|
||||
model._set("C2", "=T.TEST(A2:A10, B2:B10, 1, 2)");
|
||||
model._set("C3", "=T.TEST(A2:A10, B2:B10, 1, 3)");
|
||||
model._set("C4", "=T.TEST(A2:A10, B2:B10, 2, 1)");
|
||||
model._set("C5", "=T.TEST(A2:A10, B2:B10, 2, 2)");
|
||||
model._set("C6", "=T.TEST(A2:A10, B2:B10, 2, 3)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("C1"), *"0.103836888");
|
||||
assert_eq!(model._get_text("C2"), *"0.100244599");
|
||||
assert_eq!(model._get_text("C3"), *"0.105360319");
|
||||
assert_eq!(model._get_text("C4"), *"0.207673777");
|
||||
assert_eq!(model._get_text("C5"), *"0.200489197");
|
||||
assert_eq!(model._get_text("C6"), *"0.210720639");
|
||||
}
|
||||
46
base/src/test/statistical/test_fn_var.rs
Normal file
46
base/src/test/statistical/test_fn_var.rs
Normal file
@@ -0,0 +1,46 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn smoke_test() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=STDEV.P(10, 12, 23, 23, 16, 23, 21)");
|
||||
model._set("A2", "=STDEV.S(10, 12, 23, 23, 16, 23, 21)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"5.174505793");
|
||||
|
||||
assert_eq!(model._get_text("A2"), *"5.589105048");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn numbers() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
model._set("A2", "24");
|
||||
model._set("A3", "25");
|
||||
model._set("A4", "27");
|
||||
model._set("A5", "23");
|
||||
model._set("A6", "45");
|
||||
model._set("A7", "23.5");
|
||||
model._set("A8", "34");
|
||||
model._set("A9", "23");
|
||||
model._set("A10", "23");
|
||||
model._set("A11", "TRUE");
|
||||
model._set("A12", "'23");
|
||||
model._set("A13", "Text");
|
||||
model._set("A14", "FALSE");
|
||||
model._set("A15", "45");
|
||||
|
||||
model._set("B1", "=VAR.P(A2:A15)");
|
||||
model._set("B2", "=VAR.S(A2:A15)");
|
||||
model._set("B3", "=VARA(A2:A15)");
|
||||
model._set("B4", "=VARPA(A2:A15)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("B1"), *"71.9625");
|
||||
assert_eq!(model._get_text("B2"), *"79.958333333");
|
||||
assert_eq!(model._get_text("B3"), *"240.248626374");
|
||||
assert_eq!(model._get_text("B4"), *"223.088010204");
|
||||
}
|
||||
41
base/src/test/statistical/test_fn_weibull.rs
Normal file
41
base/src/test/statistical/test_fn_weibull.rs
Normal file
@@ -0,0 +1,41 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_weibull_dist_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
|
||||
// Valid: CDF and PDF for x = 1, alpha = 2, beta = 1
|
||||
model._set("A1", "=WEIBULL.DIST(1, 2, 1, TRUE)");
|
||||
model._set("A2", "=WEIBULL.DIST(1, 2, 1, FALSE)");
|
||||
|
||||
// Wrong number of arguments -> #ERROR!
|
||||
model._set("A3", "=WEIBULL.DIST(1, 2, 1)");
|
||||
model._set("A4", "=WEIBULL.DIST(1, 2, 1, TRUE, FALSE)");
|
||||
|
||||
// Domain errors:
|
||||
// x < 0 -> #NUM!
|
||||
model._set("A5", "=WEIBULL.DIST(-1, 2, 1, TRUE)");
|
||||
// alpha <= 0 -> #NUM!
|
||||
model._set("A6", "=WEIBULL.DIST(1, 0, 1, TRUE)");
|
||||
model._set("A7", "=WEIBULL.DIST(1, -1, 1, TRUE)");
|
||||
// beta <= 0 -> #NUM!
|
||||
model._set("A8", "=WEIBULL.DIST(1, 2, 0, TRUE)");
|
||||
model._set("A9", "=WEIBULL.DIST(1, 2, -1, TRUE)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
// 1 - e^-1
|
||||
assert_eq!(model._get_text("A1"), *"0.632120559");
|
||||
// 2 * e^-1
|
||||
assert_eq!(model._get_text("A2"), *"0.735758882");
|
||||
|
||||
assert_eq!(model._get_text("A3"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A4"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A5"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A6"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A7"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A8"), *"#NUM!");
|
||||
assert_eq!(model._get_text("A9"), *"#NUM!");
|
||||
}
|
||||
36
base/src/test/statistical/test_fn_z_test.rs
Normal file
36
base/src/test/statistical/test_fn_z_test.rs
Normal file
@@ -0,0 +1,36 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn test_fn_z_test_smoke() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A2", "3");
|
||||
model._set("A3", "6");
|
||||
model._set("A4", "7");
|
||||
model._set("A5", "8");
|
||||
model._set("A6", "6");
|
||||
model._set("A7", "5");
|
||||
model._set("A8", "4");
|
||||
model._set("A9", "2");
|
||||
model._set("A10", "1");
|
||||
model._set("A11", "9");
|
||||
|
||||
model._set("G1", "=Z.TEST(A2:A11, 4)");
|
||||
model._set("G2", "=Z.TEST(A2:A11, 6)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("G1"), *"0.090574197");
|
||||
assert_eq!(model._get_text("G2"), *"0.863043389");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn arrays() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("D1", "=Z.TEST({5,2,3,4}, 4, 123)");
|
||||
model._set("D2", "=Z.TEST({5,2,3,4}, 4)");
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("D1"), *"0.503243397");
|
||||
assert_eq!(model._get_text("D2"), *"0.780710987");
|
||||
}
|
||||
@@ -11,8 +11,8 @@ fn arguments() {
|
||||
model._set("A4", "=COMBINA()");
|
||||
model._set("A5", "=COMBIN(2)");
|
||||
model._set("A6", "=COMBINA(2)");
|
||||
model._set("A5", "=COMBIN(1, 2, 3)");
|
||||
model._set("A6", "=COMBINA(1, 2, 3)");
|
||||
model._set("A7", "=COMBIN(1, 2, 3)");
|
||||
model._set("A8", "=COMBINA(1, 2, 3)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
@@ -24,4 +24,4 @@ fn arguments() {
|
||||
assert_eq!(model._get_text("A6"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A7"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A8"), *"#ERROR!");
|
||||
}
|
||||
}
|
||||
@@ -7,8 +7,8 @@ fn datevalue_timevalue_arguments() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=DATEVALUE()");
|
||||
model._set("A2", "=TIMEVALUE()");
|
||||
model._set("A3", "=DATEVALUE("2000-01-01")")
|
||||
model._set("A4", "=TIMEVALUE("12:00:00")")
|
||||
model._set("A3", "=DATEVALUE(\"2000-01-01\")");
|
||||
model._set("A4", "=TIMEVALUE(\"12:00:00\")");
|
||||
model._set("A5", "=DATEVALUE(1,2)");
|
||||
model._set("A6", "=TIMEVALUE(1,2)");
|
||||
model.evaluate();
|
||||
@@ -20,5 +20,3 @@ fn datevalue_timevalue_arguments() {
|
||||
assert_eq!(model._get_text("A5"), *"#ERROR!");
|
||||
assert_eq!(model._get_text("A6"), *"#ERROR!");
|
||||
}
|
||||
|
||||
|
||||
|
||||
29
base/src/test/test_fn_fact.rs
Normal file
29
base/src/test/test_fn_fact.rs
Normal file
@@ -0,0 +1,29 @@
|
||||
#![allow(clippy::unwrap_used)]
|
||||
|
||||
use crate::test::util::new_empty_model;
|
||||
|
||||
#[test]
|
||||
fn large_numbers() {
|
||||
let mut model = new_empty_model();
|
||||
model._set("A1", "=FACT(170)");
|
||||
model._set("A2", "=FACTDOUBLE(36)");
|
||||
|
||||
model._set("B1", "=FACT(6)");
|
||||
model._set("B2", "=FACTDOUBLE(6)");
|
||||
|
||||
model._set("C3", "=FACTDOUBLE(15)");
|
||||
|
||||
model._set("F3", "=FACT(-0.1)");
|
||||
model._set("F4", "=FACT(0)");
|
||||
|
||||
model.evaluate();
|
||||
|
||||
assert_eq!(model._get_text("A1"), *"7.25742E+306");
|
||||
assert_eq!(model._get_text("A2"), *"1.67834E+21");
|
||||
assert_eq!(model._get_text("B1"), *"720");
|
||||
assert_eq!(model._get_text("B2"), *"48");
|
||||
assert_eq!(model._get_text("C3"), *"2027025");
|
||||
|
||||
assert_eq!(model._get_text("F3"), *"#NUM!");
|
||||
assert_eq!(model._get_text("F4"), *"1");
|
||||
}
|
||||
@@ -1,12 +1,11 @@
|
||||
import { styled, Tooltip } from "@mui/material";
|
||||
import { EllipsisVertical, Menu, Plus } from "lucide-react";
|
||||
import { Menu, Plus } from "lucide-react";
|
||||
import { useState } from "react";
|
||||
import { useTranslation } from "react-i18next";
|
||||
import { IronCalcLogo } from "../../icons";
|
||||
import { theme } from "../../theme";
|
||||
import { NAVIGATION_HEIGHT } from "../constants";
|
||||
import { StyledButton } from "../Toolbar/Toolbar";
|
||||
import WorkbookSettingsDialog from "../WorkbookSettings/WorkbookSettingsDialog";
|
||||
import type { WorkbookState } from "../workbookState";
|
||||
import SheetListMenu from "./SheetListMenu";
|
||||
import SheetTab from "./SheetTab";
|
||||
@@ -22,16 +21,12 @@ export interface SheetTabBarProps {
|
||||
onSheetRenamed: (name: string) => void;
|
||||
onSheetDeleted: () => void;
|
||||
onHideSheet: () => void;
|
||||
onOpenWorkbookSettings: () => void;
|
||||
initialLocale: string;
|
||||
initialTimezone: string;
|
||||
}
|
||||
|
||||
function SheetTabBar(props: SheetTabBarProps) {
|
||||
const { t } = useTranslation();
|
||||
const { workbookState, onSheetSelected, sheets, selectedIndex } = props;
|
||||
const [anchorEl, setAnchorEl] = useState<null | HTMLButtonElement>(null);
|
||||
const [workbookSettingsOpen, setWorkbookSettingsOpen] = useState(false);
|
||||
const open = Boolean(anchorEl);
|
||||
const handleClick = (event: React.MouseEvent<HTMLButtonElement>) => {
|
||||
setAnchorEl(event.currentTarget);
|
||||
@@ -100,17 +95,6 @@ function SheetTabBar(props: SheetTabBarProps) {
|
||||
<IronCalcLogo />
|
||||
</LogoLink>
|
||||
</Tooltip>
|
||||
<Tooltip title={t("workbook_settings.open_settings")}>
|
||||
<StyledButton
|
||||
$pressed={false}
|
||||
onClick={() => {
|
||||
setWorkbookSettingsOpen(true);
|
||||
props.onOpenWorkbookSettings();
|
||||
}}
|
||||
>
|
||||
<EllipsisVertical />
|
||||
</StyledButton>
|
||||
</Tooltip>
|
||||
</RightContainer>
|
||||
<SheetListMenu
|
||||
anchorEl={anchorEl}
|
||||
@@ -123,12 +107,6 @@ function SheetTabBar(props: SheetTabBarProps) {
|
||||
}}
|
||||
selectedIndex={selectedIndex}
|
||||
/>
|
||||
<WorkbookSettingsDialog
|
||||
open={workbookSettingsOpen}
|
||||
onClose={() => setWorkbookSettingsOpen(false)}
|
||||
initialLocale={props.initialLocale}
|
||||
initialTimezone={props.initialTimezone}
|
||||
/>
|
||||
</Container>
|
||||
);
|
||||
}
|
||||
@@ -192,28 +170,22 @@ const RightContainer = styled("a")`
|
||||
color: ${theme.palette.primary.main};
|
||||
height: 100%;
|
||||
padding: 0px 8px;
|
||||
gap: 4px;
|
||||
@media (max-width: 769px) {
|
||||
display: none;
|
||||
}
|
||||
`;
|
||||
|
||||
const LogoLink = styled("div")`
|
||||
display: flex;
|
||||
align-items: center;
|
||||
padding: 0px 4px;
|
||||
padding: 8px;
|
||||
border-radius: 4px;
|
||||
max-height: 24px;
|
||||
min-height: 24px;
|
||||
cursor: pointer;
|
||||
svg {
|
||||
height: 14px;
|
||||
width: auto;
|
||||
}
|
||||
&:hover {
|
||||
background-color: ${theme.palette.grey["100"]};
|
||||
transition: "all 0.2s";
|
||||
outline: 1px solid ${theme.palette.grey["200"]};
|
||||
}
|
||||
@media (max-width: 769px) {
|
||||
display: none;
|
||||
}
|
||||
`;
|
||||
|
||||
|
||||
@@ -1,429 +0,0 @@
|
||||
import styled from "@emotion/styled";
|
||||
import {
|
||||
Autocomplete,
|
||||
Box,
|
||||
Dialog,
|
||||
FormControl,
|
||||
MenuItem,
|
||||
Select,
|
||||
TextField,
|
||||
} from "@mui/material";
|
||||
import { Check, X } from "lucide-react";
|
||||
import { useState } from "react";
|
||||
import { useTranslation } from "react-i18next";
|
||||
import { theme } from "../../theme";
|
||||
|
||||
type WorkbookSettingsDialogProps = {
|
||||
open: boolean;
|
||||
onClose: () => void;
|
||||
initialLocale: string;
|
||||
initialTimezone: string;
|
||||
onSave?: (locale: string, timezone: string) => void;
|
||||
};
|
||||
|
||||
const WorkbookSettingsDialog = (properties: WorkbookSettingsDialogProps) => {
|
||||
const { t } = useTranslation();
|
||||
const locales = ["en-US", "en-GB", "de-DE", "fr-FR", "es-ES"];
|
||||
const timezones = [
|
||||
"Berlin, Germany (GMT+1)",
|
||||
"New York, USA (GMT-5)",
|
||||
"Tokyo, Japan (GMT+9)",
|
||||
"London, UK (GMT+0)",
|
||||
"Sydney, Australia (GMT+10)",
|
||||
];
|
||||
const [selectedLocale, setSelectedLocale] = useState<string>(
|
||||
properties.initialLocale && locales.includes(properties.initialLocale)
|
||||
? properties.initialLocale
|
||||
: locales[0],
|
||||
);
|
||||
const [selectedTimezone, setSelectedTimezone] = useState<string>(
|
||||
properties.initialTimezone && timezones.includes(properties.initialTimezone)
|
||||
? properties.initialTimezone
|
||||
: timezones[0],
|
||||
);
|
||||
|
||||
const handleSave = () => {
|
||||
if (properties.onSave && selectedLocale && selectedTimezone) {
|
||||
properties.onSave(selectedLocale, selectedTimezone);
|
||||
}
|
||||
properties.onClose();
|
||||
};
|
||||
|
||||
// Ensure selectedLocale is always a valid locale
|
||||
const validSelectedLocale =
|
||||
selectedLocale && locales.includes(selectedLocale)
|
||||
? selectedLocale
|
||||
: locales[0];
|
||||
|
||||
// Ensure selectedTimezone is always a valid timezone
|
||||
const validSelectedTimezone =
|
||||
selectedTimezone && timezones.includes(selectedTimezone)
|
||||
? selectedTimezone
|
||||
: timezones[0];
|
||||
|
||||
return (
|
||||
<StyledDialog
|
||||
open={properties.open}
|
||||
onClose={(_event, reason) => {
|
||||
if (reason === "backdropClick" || reason === "escapeKeyDown") {
|
||||
properties.onClose();
|
||||
}
|
||||
}}
|
||||
>
|
||||
<StyledDialogTitle>
|
||||
{t("workbook_settings.title")}
|
||||
<Cross
|
||||
onClick={properties.onClose}
|
||||
tabIndex={0}
|
||||
onKeyDown={(event) => {
|
||||
if (event.key === "Enter") {
|
||||
properties.onClose();
|
||||
}
|
||||
}}
|
||||
>
|
||||
<X />
|
||||
</Cross>
|
||||
</StyledDialogTitle>
|
||||
|
||||
<StyledDialogContent
|
||||
onClick={(event) => event.stopPropagation()}
|
||||
onMouseDown={(event) => event.stopPropagation()}
|
||||
>
|
||||
<StyledSectionTitle>
|
||||
{t("workbook_settings.locale_and_timezone.title")}
|
||||
</StyledSectionTitle>
|
||||
<FieldWrapper>
|
||||
<StyledLabel htmlFor="locale">
|
||||
{t("workbook_settings.locale_and_timezone.locale_label")}
|
||||
</StyledLabel>
|
||||
<FormControl fullWidth>
|
||||
<StyledSelect
|
||||
id="locale"
|
||||
value={validSelectedLocale}
|
||||
onChange={(event) => {
|
||||
setSelectedLocale(event.target.value as string);
|
||||
}}
|
||||
MenuProps={{
|
||||
PaperProps: {
|
||||
sx: menuPaperStyles,
|
||||
},
|
||||
TransitionProps: {
|
||||
timeout: 0,
|
||||
},
|
||||
}}
|
||||
>
|
||||
{locales.map((locale) => (
|
||||
<StyledMenuItem
|
||||
key={locale}
|
||||
value={locale}
|
||||
$isSelected={locale === selectedLocale}
|
||||
>
|
||||
{locale}
|
||||
</StyledMenuItem>
|
||||
))}
|
||||
</StyledSelect>
|
||||
<HelperBox>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.locale_example1")}
|
||||
<RowValue>1,234.56</RowValue>
|
||||
</Row>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.locale_example2")}
|
||||
<RowValue>12/31/2025</RowValue>
|
||||
</Row>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.locale_example3")}
|
||||
<RowValue>11/23/2025 09:21:06 PM</RowValue>
|
||||
</Row>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.locale_example4")}
|
||||
<RowValue>Monday</RowValue>
|
||||
</Row>
|
||||
</HelperBox>
|
||||
</FormControl>
|
||||
</FieldWrapper>
|
||||
<FieldWrapper>
|
||||
<StyledLabel htmlFor="timezone">
|
||||
{t("workbook_settings.locale_and_timezone.timezone_label")}
|
||||
</StyledLabel>
|
||||
<FormControl fullWidth>
|
||||
<StyledAutocomplete
|
||||
id="timezone"
|
||||
value={validSelectedTimezone}
|
||||
onChange={(_event, newValue) => {
|
||||
setSelectedTimezone((newValue as string) || "");
|
||||
}}
|
||||
options={timezones}
|
||||
renderInput={(params) => <TextField {...params} />}
|
||||
renderOption={(props, option) => (
|
||||
<StyledMenuItem
|
||||
{...props}
|
||||
key={option as string}
|
||||
$isSelected={option === validSelectedTimezone}
|
||||
>
|
||||
{option as string}
|
||||
</StyledMenuItem>
|
||||
)}
|
||||
disableClearable
|
||||
slotProps={{
|
||||
paper: {
|
||||
sx: menuPaperStyles,
|
||||
},
|
||||
popper: {
|
||||
sx: {
|
||||
"& .MuiAutocomplete-paper": {
|
||||
transition: "none !important",
|
||||
},
|
||||
},
|
||||
},
|
||||
popupIndicator: {
|
||||
disableRipple: true,
|
||||
},
|
||||
}}
|
||||
/>
|
||||
<HelperBox>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.timezone_example1")}
|
||||
<RowValue>23/11/2025</RowValue>
|
||||
</Row>
|
||||
<Row>
|
||||
{t("workbook_settings.locale_and_timezone.timezone_example2")}
|
||||
<RowValue>11/23/2025 09:21:06 PM</RowValue>
|
||||
</Row>
|
||||
</HelperBox>
|
||||
</FormControl>
|
||||
</FieldWrapper>
|
||||
</StyledDialogContent>
|
||||
|
||||
<DialogFooter>
|
||||
<StyledButton onClick={handleSave} tabIndex={0}>
|
||||
<Check
|
||||
style={{ width: "16px", height: "16px", marginRight: "8px" }}
|
||||
/>
|
||||
{t("num_fmt.save")}
|
||||
</StyledButton>
|
||||
</DialogFooter>
|
||||
</StyledDialog>
|
||||
);
|
||||
};
|
||||
|
||||
const StyledDialog = styled(Dialog)`
|
||||
& .MuiPaper-root {
|
||||
max-width: 320px;
|
||||
width: 320px;
|
||||
min-width: 280px;
|
||||
border-radius: 8px;
|
||||
padding: 0px;
|
||||
}
|
||||
`;
|
||||
|
||||
const StyledDialogTitle = styled("div")`
|
||||
display: flex;
|
||||
align-items: center;
|
||||
height: 44px;
|
||||
font-size: 14px;
|
||||
font-weight: 500;
|
||||
font-family: Inter;
|
||||
padding: 0px 12px;
|
||||
justify-content: space-between;
|
||||
border-bottom: 1px solid ${theme.palette.grey["300"]};
|
||||
`;
|
||||
|
||||
const Cross = styled("div")`
|
||||
&:hover {
|
||||
background-color: ${theme.palette.grey["50"]};
|
||||
}
|
||||
display: flex;
|
||||
border-radius: 4px;
|
||||
height: 24px;
|
||||
width: 24px;
|
||||
cursor: pointer;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
svg {
|
||||
width: 16px;
|
||||
height: 16px;
|
||||
stroke-width: 1.5;
|
||||
}
|
||||
`;
|
||||
|
||||
const StyledDialogContent = styled("div")`
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 12px;
|
||||
font-size: 12px;
|
||||
margin: 12px;
|
||||
`;
|
||||
|
||||
const StyledSectionTitle = styled("h1")`
|
||||
font-size: 14px;
|
||||
font-weight: 600;
|
||||
font-family: Inter;
|
||||
margin: 0px;
|
||||
color: ${theme.palette.text.primary};
|
||||
`;
|
||||
|
||||
const StyledSelect = styled(Select)`
|
||||
font-size: 12px;
|
||||
height: 32px;
|
||||
& .MuiInputBase-root {
|
||||
padding: 0px !important;
|
||||
}
|
||||
& .MuiInputBase-input {
|
||||
font-size: 12px;
|
||||
height: 20px;
|
||||
padding-right: 0px !important;
|
||||
margin: 0px;
|
||||
}
|
||||
& .MuiSelect-select {
|
||||
padding: 8px 32px 8px 8px !important;
|
||||
font-size: 12px;
|
||||
}
|
||||
& .MuiSvgIcon-root {
|
||||
right: 4px !important;
|
||||
}
|
||||
`;
|
||||
|
||||
const HelperBox = styled("div")`
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
align-items: start;
|
||||
justify-content: center;
|
||||
gap: 2px;
|
||||
box-sizing: border-box;
|
||||
border: 1px solid ${theme.palette.grey["300"]};
|
||||
font-family: Inter;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
margin-top: 8px;
|
||||
background-color: ${theme.palette.grey["100"]};
|
||||
border-radius: 4px;
|
||||
padding: 8px;
|
||||
`;
|
||||
|
||||
const Row = styled("div")`
|
||||
display: flex;
|
||||
flex-direction: row;
|
||||
gap: 4px;
|
||||
width: 100%;
|
||||
justify-content: space-between;
|
||||
color: ${theme.palette.grey[700]};
|
||||
`;
|
||||
|
||||
const RowValue = styled("span")`
|
||||
font-size: 12px;
|
||||
font-family: Inter;
|
||||
font-weight: normal;
|
||||
color: ${theme.palette.grey[500]};
|
||||
`;
|
||||
|
||||
const StyledAutocomplete = styled(Autocomplete)`
|
||||
& .MuiInputBase-root {
|
||||
padding: 0px !important;
|
||||
height: 32px;
|
||||
}
|
||||
& .MuiInputBase-input {
|
||||
font-size: 12px;
|
||||
height: 20px;
|
||||
padding: 0px;
|
||||
padding-right: 0px !important;
|
||||
margin: 0px;
|
||||
}
|
||||
& .MuiAutocomplete-popupIndicator:hover {
|
||||
background-color: transparent !important;
|
||||
}
|
||||
& .MuiAutocomplete-popupIndicator {
|
||||
& .MuiTouchRipple-root {
|
||||
display: none;
|
||||
}
|
||||
}
|
||||
& .MuiOutlinedInput-root .MuiAutocomplete-endAdornment {
|
||||
right: 4px;
|
||||
}
|
||||
& .MuiOutlinedInput-root .MuiAutocomplete-input {
|
||||
padding: 8px !important;
|
||||
}
|
||||
`;
|
||||
|
||||
const menuPaperStyles = {
|
||||
boxSizing: "border-box",
|
||||
marginTop: "4px",
|
||||
padding: "4px",
|
||||
borderRadius: "8px",
|
||||
transition: "none !important",
|
||||
"& .MuiList-padding": {
|
||||
padding: 0,
|
||||
},
|
||||
"& .MuiList-root": {
|
||||
padding: 0,
|
||||
},
|
||||
"& .MuiAutocomplete-noOptions": {
|
||||
padding: "8px",
|
||||
fontSize: "12px",
|
||||
fontFamily: "Inter",
|
||||
},
|
||||
"& .MuiMenuItem-root": {
|
||||
height: "32px !important",
|
||||
padding: "8px !important",
|
||||
minHeight: "32px !important",
|
||||
},
|
||||
};
|
||||
|
||||
const StyledMenuItem = styled(MenuItem)<{ $isSelected?: boolean }>`
|
||||
padding: 8px !important;
|
||||
height: 32px !important;
|
||||
min-height: 32px !important;
|
||||
border-radius: 4px;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
font-size: 12px;
|
||||
background-color: ${({ $isSelected }) =>
|
||||
$isSelected ? theme.palette.grey[50] : "transparent"} !important;
|
||||
&:hover {
|
||||
background-color: ${theme.palette.grey[50]} !important;
|
||||
}
|
||||
`;
|
||||
|
||||
const FieldWrapper = styled(Box)`
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
width: 100%;
|
||||
gap: 6px;
|
||||
`;
|
||||
|
||||
const StyledLabel = styled("label")`
|
||||
font-size: 12px;
|
||||
font-family: "Inter";
|
||||
font-weight: 500;
|
||||
color: ${theme.palette.text.primary};
|
||||
display: block;
|
||||
`;
|
||||
|
||||
const DialogFooter = styled("div")`
|
||||
color: ${theme.palette.grey[700]};
|
||||
display: flex;
|
||||
align-items: center;
|
||||
border-top: 1px solid ${theme.palette.grey["300"]};
|
||||
font-family: Inter;
|
||||
justify-content: flex-end;
|
||||
padding: 12px;
|
||||
`;
|
||||
|
||||
const StyledButton = styled("div")`
|
||||
cursor: pointer;
|
||||
color: ${theme.palette.common.white};
|
||||
background: ${theme.palette.primary.main};
|
||||
padding: 0px 10px;
|
||||
height: 36px;
|
||||
line-height: 36px;
|
||||
border-radius: 4px;
|
||||
display: flex;
|
||||
align-items: center;
|
||||
font-family: "Inter";
|
||||
font-size: 14px;
|
||||
&:hover {
|
||||
background: ${theme.palette.primary.dark};
|
||||
}
|
||||
`;
|
||||
|
||||
export default WorkbookSettingsDialog;
|
||||
@@ -164,21 +164,5 @@
|
||||
"right_drawer": {
|
||||
"close": "Close",
|
||||
"resize_drawer": "Resize drawer"
|
||||
},
|
||||
"workbook_settings": {
|
||||
"open_settings": "Open settings",
|
||||
"title": "Workbook Settings",
|
||||
"close": "Close dialog",
|
||||
"locale_and_timezone": {
|
||||
"title": "Locale & Timezone",
|
||||
"locale_label": "Locale",
|
||||
"locale_example1": "Number",
|
||||
"locale_example2": "Date",
|
||||
"locale_example3": "Date and Time",
|
||||
"locale_example4": "First day of the week",
|
||||
"timezone_label": "Timezone",
|
||||
"timezone_example1": "TODAY()",
|
||||
"timezone_example2": "NOW()"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BIN
xlsx/tests/calc_tests/BETA_GAMMA.xlsx
Normal file
BIN
xlsx/tests/calc_tests/BETA_GAMMA.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/AVEDEV.xlsx
Normal file
BIN
xlsx/tests/statistical/AVEDEV.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/BETA_DIST_INV.xlsx
Normal file
BIN
xlsx/tests/statistical/BETA_DIST_INV.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/BINOM.xlsx
Normal file
BIN
xlsx/tests/statistical/BINOM.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/CHISQ.xlsx
Normal file
BIN
xlsx/tests/statistical/CHISQ.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/CHISQ_TEST.xlsx
Normal file
BIN
xlsx/tests/statistical/CHISQ_TEST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/CONFIDENCE.xlsx
Normal file
BIN
xlsx/tests/statistical/CONFIDENCE.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/COVARIANCE.xlsx
Normal file
BIN
xlsx/tests/statistical/COVARIANCE.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/DEVSQ.xlsx
Normal file
BIN
xlsx/tests/statistical/DEVSQ.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/EXPON_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/EXPON_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/FISHER.xlsx
Normal file
BIN
xlsx/tests/statistical/FISHER.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/F_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/F_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/GAMMA.xlsx
Normal file
BIN
xlsx/tests/statistical/GAMMA.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/HYPERGEOM_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/HYPERGEOM_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/LOGNORM.xlsx
Normal file
BIN
xlsx/tests/statistical/LOGNORM.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/NORM_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/NORM_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/PEARSON.xlsx
Normal file
BIN
xlsx/tests/statistical/PEARSON.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/PHI.xlsx
Normal file
BIN
xlsx/tests/statistical/PHI.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/POISSON.xlsx
Normal file
BIN
xlsx/tests/statistical/POISSON.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/STANDARIZE.xlsx
Normal file
BIN
xlsx/tests/statistical/STANDARIZE.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/STDEV.xlsx
Normal file
BIN
xlsx/tests/statistical/STDEV.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/T_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/T_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/T_TEST.xlsx
Normal file
BIN
xlsx/tests/statistical/T_TEST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/VARIANCE.xlsx
Normal file
BIN
xlsx/tests/statistical/VARIANCE.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/WEIBULL_DIST.xlsx
Normal file
BIN
xlsx/tests/statistical/WEIBULL_DIST.xlsx
Normal file
Binary file not shown.
BIN
xlsx/tests/statistical/Z_TEST.xlsx
Normal file
BIN
xlsx/tests/statistical/Z_TEST.xlsx
Normal file
Binary file not shown.
@@ -373,6 +373,45 @@ fn test_xlsx() {
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_statistical_xlsx() {
|
||||
let mut entries = fs::read_dir("tests/statistical/")
|
||||
.unwrap()
|
||||
.map(|res| res.map(|e| e.path()))
|
||||
.collect::<Result<Vec<_>, io::Error>>()
|
||||
.unwrap();
|
||||
entries.sort();
|
||||
let temp_folder = env::temp_dir();
|
||||
let path = format!("{}", Uuid::new_v4());
|
||||
let dir = temp_folder.join(path);
|
||||
fs::create_dir(&dir).unwrap();
|
||||
let mut is_error = false;
|
||||
for file_path in entries {
|
||||
let file_name_str = file_path.file_name().unwrap().to_str().unwrap();
|
||||
let file_path_str = file_path.to_str().unwrap();
|
||||
println!("Testing file: {file_path_str}");
|
||||
if file_name_str.ends_with(".xlsx") && !file_name_str.starts_with('~') {
|
||||
if let Err(message) = test_file(file_path_str) {
|
||||
println!("Error with file: '{file_path_str}'");
|
||||
println!("{message}");
|
||||
is_error = true;
|
||||
}
|
||||
let t = test_load_and_saving(file_path_str, &dir);
|
||||
if t.is_err() {
|
||||
println!("Error while load and saving file: {file_path_str}");
|
||||
is_error = true;
|
||||
}
|
||||
} else {
|
||||
println!("skipping");
|
||||
}
|
||||
}
|
||||
fs::remove_dir_all(&dir).unwrap();
|
||||
assert!(
|
||||
!is_error,
|
||||
"Models were evaluated inconsistently with XLSX data."
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn no_export() {
|
||||
let mut entries = fs::read_dir("tests/calc_test_no_export/")
|
||||
|
||||
Reference in New Issue
Block a user